The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature
Geometry & topology, Tome 17 (2013) no. 3, pp. 1773-1789.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a closed m–dimensional spin manifold which admits a metric of positive scalar curvature and let +(X) be the space of all such metrics. For any g +(X), Hitchin used the KO–valued α–invariant to define a homomorphism An1: πn1(+(X),g) KOm+n. He then showed that A00 if m = 8k or 8k + 1 and that A10 if m = 8k 1 or 8k.

In this paper we use Hitchin’s methods and extend these results by proving that

whenever m 7 and 8j m 0. The new input are elements with nontrivial α–invariant deep down in the Gromoll filtration of the group Γn+1 = π0(Diff(Dn,)). We show that α(Γ8j58j+2){0} for j 1. This information about elements existing deep in the Gromoll filtration is the second main new result of this note.

DOI : 10.2140/gt.2013.17.1773
Classification : 57R60, 53C21, 53C27, 58B20
Keywords: positive scalar curvature, $\alpha$–invariant, Gromoll filtration, exotic sphere

Crowley, Diarmuid 1 ; Schick, Thomas 2

1 Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany
2 Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstrasse 3, D-37073 Göttingen, Germany
@article{GT_2013_17_3_a10,
     author = {Crowley, Diarmuid and Schick, Thomas},
     title = {The {Gromoll} filtration, {KO{\textendash}characteristic} classes and metrics of positive scalar curvature},
     journal = {Geometry & topology},
     pages = {1773--1789},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1773},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/}
}
TY  - JOUR
AU  - Crowley, Diarmuid
AU  - Schick, Thomas
TI  - The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature
JO  - Geometry & topology
PY  - 2013
SP  - 1773
EP  - 1789
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/
DO  - 10.2140/gt.2013.17.1773
ID  - GT_2013_17_3_a10
ER  - 
%0 Journal Article
%A Crowley, Diarmuid
%A Schick, Thomas
%T The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature
%J Geometry & topology
%D 2013
%P 1773-1789
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/
%R 10.2140/gt.2013.17.1773
%F GT_2013_17_3_a10
Crowley, Diarmuid; Schick, Thomas. The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature. Geometry & topology, Tome 17 (2013) no. 3, pp. 1773-1789. doi : 10.2140/gt.2013.17.1773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/

[1] J F Adams, On the groups J(X), IV, Topology 5 (1966) 21

[2] P Antonelli, D Burghelea, P J Kahn, Gromoll groups, DiffSn and bilinear constructions of exotic spheres, Bull. Amer. Math. Soc. 76 (1970) 772

[3] B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507

[4] D Burghelea, On the homotopy type of diff(Mn) and connected problems, Ann. Inst. Fourier (Grenoble) 23 (1973) 3

[5] D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, I, II, Trans. Amer. Math. Soc. 196 (1974) 1, 37

[6] J Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5

[7] E B Curtis, Some nonzero homotopy groups of spheres, Bull. Amer. Math. Soc. 75 (1969) 541

[8] D Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966) 353

[9] B Hanke, T Schick, W Steimle, The space of metrics of positive scalar curvature

[10] A E Hatcher, A proof of the Smale conjecture, Diff(S3) ≃ O(4), Ann. of Math. 117 (1983) 553

[11] M W Hirsch, B Mazur, Smoothings of piecewise linear manifolds, 80, Princeton Univ. Press (1974)

[12] N Hitchin, Harmonic spinors, Advances in Math. 14 (1974) 1

[13] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504

[14] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)

[15] T Lance, Differentiable structures on manifolds, from: "Surveys on surgery theory, Vol. 1" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 73

[16] R Lashof, M Rothenberg, Microbundles and smoothing, Topology 3 (1965) 357

[17] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989)

[18] J P Levine, Lectures on groups of homotopy spheres, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 62

[19] W Lück, A basic introduction to surgery theory, from: "Topology of high-dimensional manifolds, No. 1, 2" (editors F T Farrell, L Göttsche, W Lück), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 1

[20] I Madsen, R J Milgram, The classifying spaces for surgery and cobordism of manifolds, 92, Princeton Univ. Press (1979)

[21] J W Milnor, Remarks concerning spin manifolds, from: "Differential and Combinatorial Topology", Princeton Univ. Press (1965) 55

[22] S P Novikov, Differentiable sphere bundles, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965) 71

[23] P Piazza, T Schick, Groups with torsion, bordism and rho invariants, Pacific J. Math. 232 (2007) 355

[24] J Rosenberg, C∗–algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983) 197

[25] T Schick, A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture, Topology 37 (1998) 1165

[26] S Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. 74 (1961) 391

[27] S Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992) 511

[28] H Toda, Composition methods in homotopy groups of spheres, 49, Princeton Univ. Press (1962)

[29] M Weiss, Sphères exotiques et l’espace de Whitehead, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986) 885

[30] M Weiss, Pinching and concordance theory, J. Differential Geom. 38 (1993) 387

Cité par Sources :