Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed –dimensional spin manifold which admits a metric of positive scalar curvature and let be the space of all such metrics. For any , Hitchin used the –valued –invariant to define a homomorphism . He then showed that if or and that if or .
In this paper we use Hitchin’s methods and extend these results by proving that
whenever and . The new input are elements with nontrivial –invariant deep down in the Gromoll filtration of the group . We show that for . This information about elements existing deep in the Gromoll filtration is the second main new result of this note.
Crowley, Diarmuid 1 ; Schick, Thomas 2
@article{GT_2013_17_3_a10, author = {Crowley, Diarmuid and Schick, Thomas}, title = {The {Gromoll} filtration, {KO{\textendash}characteristic} classes and metrics of positive scalar curvature}, journal = {Geometry & topology}, pages = {1773--1789}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1773}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/} }
TY - JOUR AU - Crowley, Diarmuid AU - Schick, Thomas TI - The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature JO - Geometry & topology PY - 2013 SP - 1773 EP - 1789 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/ DO - 10.2140/gt.2013.17.1773 ID - GT_2013_17_3_a10 ER -
%0 Journal Article %A Crowley, Diarmuid %A Schick, Thomas %T The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature %J Geometry & topology %D 2013 %P 1773-1789 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/ %R 10.2140/gt.2013.17.1773 %F GT_2013_17_3_a10
Crowley, Diarmuid; Schick, Thomas. The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature. Geometry & topology, Tome 17 (2013) no. 3, pp. 1773-1789. doi : 10.2140/gt.2013.17.1773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1773/
[1] On the groups J(X), IV, Topology 5 (1966) 21
,[2] Gromoll groups, DiffSn and bilinear constructions of exotic spheres, Bull. Amer. Math. Soc. 76 (1970) 772
, , ,[3] The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507
, ,[4] On the homotopy type of diff(Mn) and connected problems, Ann. Inst. Fourier (Grenoble) 23 (1973) 3
,[5] The homotopy type of the space of diffeomorphisms, I, II, Trans. Amer. Math. Soc. 196 (1974) 1, 37
, ,[6] La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5
,[7] Some nonzero homotopy groups of spheres, Bull. Amer. Math. Soc. 75 (1969) 541
,[8] Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966) 353
,[9] The space of metrics of positive scalar curvature
, , ,[10] A proof of the Smale conjecture, Diff(S3) ≃ O(4), Ann. of Math. 117 (1983) 553
,[11] Smoothings of piecewise linear manifolds, 80, Princeton Univ. Press (1974)
, ,[12] Harmonic spinors, Advances in Math. 14 (1974) 1
,[13] Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504
, ,[14] Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)
, ,[15] Differentiable structures on manifolds, from: "Surveys on surgery theory, Vol. 1" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 73
,[16] Microbundles and smoothing, Topology 3 (1965) 357
, ,[17] Spin geometry, 38, Princeton Univ. Press (1989)
, ,[18] Lectures on groups of homotopy spheres, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 62
,[19] A basic introduction to surgery theory, from: "Topology of high-dimensional manifolds, No. 1, 2" (editors F T Farrell, L Göttsche, W Lück), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 1
,[20] The classifying spaces for surgery and cobordism of manifolds, 92, Princeton Univ. Press (1979)
, ,[21] Remarks concerning spin manifolds, from: "Differential and Combinatorial Topology", Princeton Univ. Press (1965) 55
,[22] Differentiable sphere bundles, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965) 71
,[23] Groups with torsion, bordism and rho invariants, Pacific J. Math. 232 (2007) 355
, ,[24] C∗–algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983) 197
,[25] A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture, Topology 37 (1998) 1165
,[26] Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. 74 (1961) 391
,[27] Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992) 511
,[28] Composition methods in homotopy groups of spheres, 49, Princeton Univ. Press (1962)
,[29] Sphères exotiques et l’espace de Whitehead, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986) 885
,[30] Pinching and concordance theory, J. Differential Geom. 38 (1993) 387
,Cité par Sources :