Universal realisators for homology classes
Geometry & topology, Tome 17 (2013) no. 3, pp. 1745-1772.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study oriented closed manifolds Mn possessing the following universal realisation of cycles (URC) property: For each topological space X and each homology class z Hn(X, ), there exists a finite-sheeted covering M̂n Mn and a continuous mapping f : M̂n X such that f[M̂n] = kz for a non-zero integer k. We find a wide class of examples of such manifolds Mn among so-called small covers of simple polytopes. In particular, we find 4–dimensional hyperbolic manifolds possessing the URC property. As a consequence, we obtain that for each 4–dimensional oriented closed manifold N4, there exists a mapping of non-zero degree of a hyperbolic manifold M4 to N4. This was earlier conjectured by Kotschick and Löh.

DOI : 10.2140/gt.2013.17.1745
Classification : 57N65, 53C23, 52B70, 20F55
Keywords: realisation of cycles, hyperbolic manifold, simple polytope, small cover, permutahedron, Coxeter group, negative curvature

Gaifullin, Alexander 1

1 Department of Geometry and Topology, Steklov Mathematical Institute, 8 Gubkina Str, Moscow 119991, Russia, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia, Institute for Information Transmission Problems (Kharkevich Institute), 19 Bolshoy Karetny per, Moscow 127994, Russia
@article{GT_2013_17_3_a9,
     author = {Gaifullin, Alexander},
     title = {Universal realisators for homology classes},
     journal = {Geometry & topology},
     pages = {1745--1772},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1745},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/}
}
TY  - JOUR
AU  - Gaifullin, Alexander
TI  - Universal realisators for homology classes
JO  - Geometry & topology
PY  - 2013
SP  - 1745
EP  - 1772
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/
DO  - 10.2140/gt.2013.17.1745
ID  - GT_2013_17_3_a9
ER  - 
%0 Journal Article
%A Gaifullin, Alexander
%T Universal realisators for homology classes
%J Geometry & topology
%D 2013
%P 1745-1772
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/
%R 10.2140/gt.2013.17.1745
%F GT_2013_17_3_a9
Gaifullin, Alexander. Universal realisators for homology classes. Geometry & topology, Tome 17 (2013) no. 3, pp. 1745-1772. doi : 10.2140/gt.2013.17.1745. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/

[1] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999)

[2] R Brooks, On branched coverings of 3–manifolds which fiber over the circle, J. Reine Angew. Math. 362 (1985) 87

[3] V M Buchštaber, T E Panov, Torus actions and their applications in topology and combinatorics, 24, Amer. Math. Soc. (2002)

[4] V M Buhštaber, Modules of differentials of the Atiyah–Hirzebruch spectral sequence, I, Mat. Sb. 78 (120) (1969) 307

[5] V M Buhštaber, Modules of differentials of the Atiyah–Hirzebruch spectral sequence, II, Mat. Sb. 83 (125) (1970) 61

[6] J A Carlson, D Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) 173

[7] R M Charney, M W Davis, Strict hyperbolization, Topology 34 (1995) 329

[8] M W Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293

[9] M W Davis, Some aspherical manifolds, Duke Math. J. 55 (1987) 105

[10] M W Davis, Nonpositive curvature and reflection groups, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 373

[11] M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417

[12] M W Davis, T Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347

[13] A A Gaĭfullin, Realization of cycles by aspherical manifolds, Uspekhi Mat. Nauk 63 (2008) 157

[14] A A Gaĭfullin, The manifold of isospectral symmetric tridiagonal matrices and the realization of cycles by aspherical manifolds, Tr. Mat. Inst. Steklova 263 (2008) 44

[15] A A Gaĭfullin, Construction of combinatorial manifolds with prescribed sets of links of vertices, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008) 3

[16] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5

[17] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[18] D Kotschick, C Löh, Fundamental classes not representable by products, J. Lond. Math. Soc. 79 (2009) 545

[19] F Löbell, Beispiele geschlossener dreidimensionaler Clifford–Kleinscher Räume negativer Krümmung, Ber. Sachs. Acad. Wiss. 83 (1931) 168

[20] J Milnor, W Thurston, Characteristic numbers of 3–manifolds, Enseignement Math. 23 (1977) 249

[21] S P Novikov, Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962) 407

[22] P Ontaneda, Pinched smooth hyperbolization

[23] D A Stone, Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc. 215 (1976) 1

[24] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

[25] C Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984) 981

[26] È B Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072

[27] È B Vinberg, Absence of crystallographic groups of reflections in Lobachevskiĭ spaces of large dimension, Trudy Moskov. Mat. Obshch. 47 (1984) 68, 246

[28] S Wang, Non-zero degree maps between 3–manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editor T Li), Higher Ed. Press (2002) 457

Cité par Sources :