Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study oriented closed manifolds possessing the following universal realisation of cycles (URC) property: For each topological space and each homology class , there exists a finite-sheeted covering and a continuous mapping such that for a non-zero integer . We find a wide class of examples of such manifolds among so-called small covers of simple polytopes. In particular, we find 4–dimensional hyperbolic manifolds possessing the URC property. As a consequence, we obtain that for each 4–dimensional oriented closed manifold , there exists a mapping of non-zero degree of a hyperbolic manifold to . This was earlier conjectured by Kotschick and Löh.
Gaifullin, Alexander 1
@article{GT_2013_17_3_a9, author = {Gaifullin, Alexander}, title = {Universal realisators for homology classes}, journal = {Geometry & topology}, pages = {1745--1772}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1745}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/} }
Gaifullin, Alexander. Universal realisators for homology classes. Geometry & topology, Tome 17 (2013) no. 3, pp. 1745-1772. doi : 10.2140/gt.2013.17.1745. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1745/
[1] Metric spaces of non-positive curvature, 319, Springer (1999)
, ,[2] On branched coverings of 3–manifolds which fiber over the circle, J. Reine Angew. Math. 362 (1985) 87
,[3] Torus actions and their applications in topology and combinatorics, 24, Amer. Math. Soc. (2002)
, ,[4] Modules of differentials of the Atiyah–Hirzebruch spectral sequence, I, Mat. Sb. 78 (120) (1969) 307
,[5] Modules of differentials of the Atiyah–Hirzebruch spectral sequence, II, Mat. Sb. 83 (125) (1970) 61
,[6] Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. (1989) 173
, ,[7] Strict hyperbolization, Topology 34 (1995) 329
, ,[8] Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983) 293
,[9] Some aspherical manifolds, Duke Math. J. 55 (1987) 105
,[10] Nonpositive curvature and reflection groups, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 373
,[11] Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417
, ,[12] Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347
, ,[13] Realization of cycles by aspherical manifolds, Uspekhi Mat. Nauk 63 (2008) 157
,[14] The manifold of isospectral symmetric tridiagonal matrices and the realization of cycles by aspherical manifolds, Tr. Mat. Inst. Steklova 263 (2008) 44
,[15] Construction of combinatorial manifolds with prescribed sets of links of vertices, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008) 3
,[16] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5
,[17] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[18] Fundamental classes not representable by products, J. Lond. Math. Soc. 79 (2009) 545
, ,[19] Beispiele geschlossener dreidimensionaler Clifford–Kleinscher Räume negativer Krümmung, Ber. Sachs. Acad. Wiss. 83 (1931) 168
,[20] Characteristic numbers of 3–manifolds, Enseignement Math. 23 (1977) 249
, ,[21] Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962) 407
,[22] Pinched smooth hyperbolization
,[23] Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc. 215 (1976) 1
,[24] Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17
,[25] The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984) 981
,[26] Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 1072
,[27] Absence of crystallographic groups of reflections in Lobachevskiĭ spaces of large dimension, Trudy Moskov. Mat. Obshch. 47 (1984) 68, 246
,[28] Non-zero degree maps between 3–manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editor T Li), Higher Ed. Press (2002) 457
,Cité par Sources :