Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a rigidity theorem for the geometry of the unit ball in random subspaces of the norm in of a free group. In a free group of rank , a random word of length (conditioned to lie in ) has with high probability, and the unit ball in a subspace spanned by random words of length is close to a (suitably affinely scaled) octahedron.
A conjectural generalization to hyperbolic groups and manifolds (discussed in the appendix) would show that the length of a random geodesic in a hyperbolic manifold can be recovered from the bounded cohomology of the fundamental group.
Calegari, Danny 1 ; Walker, Alden 1
@article{GT_2013_17_3_a8, author = {Calegari, Danny and Walker, Alden}, title = {Random rigidity in the free group}, journal = {Geometry & topology}, pages = {1707--1744}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1707}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/} }
Calegari, Danny; Walker, Alden. Random rigidity in the free group. Geometry & topology, Tome 17 (2013) no. 3, pp. 1707-1744. doi : 10.2140/gt.2013.17.1707. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/
[1] Longueur stable des commutateurs, Enseign. Math. 37 (1991) 109
,[2] Biharmonic functions on groups and limit theorems for quasimorphisms along random walks, Geom. Topol. 15 (2011) 123
, ,[3] Some remarks on bounded cohomology, from: "Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53
,[4] The simplicial volume of closed manifolds covered by H2 × H2, J. Topol. 1 (2008) 584
,[5] scl, 20, Mathematical Society of Japan (2009)
,[6] Stable commutator length is rational in free groups, J. Amer. Math. Soc. 22 (2009) 941
,[7] Stable commutator length in word-hyperbolic groups, Groups Geom. Dyn. 4 (2010) 59
, ,[8] Statistics and compression of scl, to appear in Ergodic Theory Dyn. Systems
, ,[9] Isometric endomorphisms of free groups, New York J. Math. 17 (2011) 713
, ,[10] The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123
,[11] Laplacians and the Cheeger inequality for directed graphs, Ann. Comb. 9 (2005) 1
,[12] Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241
,[13] Symbolic dynamics and hyperbolic groups, 1539, Springer (1993)
, ,[14] Using surfaces to solve equations in free groups, Topology 20 (1981) 133
,[15] Expectations for nonreversible Markov chains, J. Math. Anal. Appl. 220 (1998) 585
,[16] Markov chains, Springer (1983)
,[17] Hyperbolic manifolds (according to Thurston and Jørgensen), from: "Bourbaki Seminar, Vol. 1979/80", Lecture Notes in Math. 842, Springer (1981) 40
,[18] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[19] Simplices of maximal volume in hyperbolic n–space, Acta Math. 147 (1981) 1
, ,[20] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127
, ,[21] Big Omicron and big Omega and big Theta, ACM SIGACT 8 (1976) 18
,[22] Chernoff and Berry–Esséen inequalities for Markov processes, ESAIM Probab. Statist. 5 (2001) 183
,[23] Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988) 35
,[24] Exponential mixing for the geodesic flow on hyperbolic three-manifolds, J. Statist. Phys. 67 (1992) 667
,[25] A problem of bounded expressibility in free products, Proc. Cambridge Philos. Soc. 64 (1968) 573
,[26] Local limit theorems for free groups, Math. Ann. 321 (2001) 889
,[27] Probability theory, an analytic view, Cambridge Univ. Press (1993)
,[28] The geometry and topology of 3–manifolds, lecture notes, Princeton University (1978–1981)
,Cité par Sources :