Random rigidity in the free group
Geometry & topology, Tome 17 (2013) no. 3, pp. 1707-1744.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a rigidity theorem for the geometry of the unit ball in random subspaces of the scl norm in B1H of a free group. In a free group F of rank k, a random word w of length n (conditioned to lie in [F,F]) has scl(w) = log(2k 1)n6log(n) + o(nlog(n)) with high probability, and the unit ball in a subspace spanned by d random words of length O(n) is C0 close to a (suitably affinely scaled) octahedron.

A conjectural generalization to hyperbolic groups and manifolds (discussed in the appendix) would show that the length of a random geodesic in a hyperbolic manifold can be recovered from the bounded cohomology of the fundamental group.

DOI : 10.2140/gt.2013.17.1707
Classification : 20P05, 20F67, 57M07, 20F65, 20J05
Keywords: Gromov norm, stable commutator length, symbolic dynamics, rigidity, law of large numbers

Calegari, Danny 1 ; Walker, Alden 1

1 Department of Mathematics, University of Chicago, 5734 S University Avenue, Chicago, IL 60637, USA
@article{GT_2013_17_3_a8,
     author = {Calegari, Danny and Walker, Alden},
     title = {Random rigidity in the free group},
     journal = {Geometry & topology},
     pages = {1707--1744},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1707},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/}
}
TY  - JOUR
AU  - Calegari, Danny
AU  - Walker, Alden
TI  - Random rigidity in the free group
JO  - Geometry & topology
PY  - 2013
SP  - 1707
EP  - 1744
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/
DO  - 10.2140/gt.2013.17.1707
ID  - GT_2013_17_3_a8
ER  - 
%0 Journal Article
%A Calegari, Danny
%A Walker, Alden
%T Random rigidity in the free group
%J Geometry & topology
%D 2013
%P 1707-1744
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/
%R 10.2140/gt.2013.17.1707
%F GT_2013_17_3_a8
Calegari, Danny; Walker, Alden. Random rigidity in the free group. Geometry & topology, Tome 17 (2013) no. 3, pp. 1707-1744. doi : 10.2140/gt.2013.17.1707. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1707/

[1] C Bavard, Longueur stable des commutateurs, Enseign. Math. 37 (1991) 109

[2] M Björklund, T Hartnick, Biharmonic functions on groups and limit theorems for quasimorphisms along random walks, Geom. Topol. 15 (2011) 123

[3] R Brooks, Some remarks on bounded cohomology, from: "Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53

[4] M Bucher-Karlsson, The simplicial volume of closed manifolds covered by H2 × H2, J. Topol. 1 (2008) 584

[5] D Calegari, scl, 20, Mathematical Society of Japan (2009)

[6] D Calegari, Stable commutator length is rational in free groups, J. Amer. Math. Soc. 22 (2009) 941

[7] D Calegari, K Fujiwara, Stable commutator length in word-hyperbolic groups, Groups Geom. Dyn. 4 (2010) 59

[8] D Calegari, J Maher, Statistics and compression of scl, to appear in Ergodic Theory Dyn. Systems

[9] D Calegari, A Walker, Isometric endomorphisms of free groups, New York J. Math. 17 (2011) 713

[10] J W Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984) 123

[11] F Chung, Laplacians and the Cheeger inequality for directed graphs, Ann. Comb. 9 (2005) 1

[12] M Coornaert, Mesures de Patterson–Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241

[13] M Coornaert, A Papadopoulos, Symbolic dynamics and hyperbolic groups, 1539, Springer (1993)

[14] M Culler, Using surfaces to solve equations in free groups, Topology 20 (1981) 133

[15] I H Dinwoodie, Expectations for nonreversible Markov chains, J. Math. Anal. Appl. 220 (1998) 585

[16] D Freedman, Markov chains, Springer (1983)

[17] M Gromov, Hyperbolic manifolds (according to Thurston and Jørgensen), from: "Bourbaki Seminar, Vol. 1979/80", Lecture Notes in Math. 842, Springer (1981) 40

[18] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[19] U Haagerup, H J Munkholm, Simplices of maximal volume in hyperbolic n–space, Acta Math. 147 (1981) 1

[20] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127

[21] D Knuth, Big Omicron and big Omega and big Theta, ACM SIGACT 8 (1976) 18

[22] P Lezaud, Chernoff and Berry–Esséen inequalities for Markov processes, ESAIM Probab. Statist. 5 (2001) 183

[23] R C Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988) 35

[24] M Pollicott, Exponential mixing for the geodesic flow on hyperbolic three-manifolds, J. Statist. Phys. 67 (1992) 667

[25] A H Rhemtulla, A problem of bounded expressibility in free products, Proc. Cambridge Philos. Soc. 64 (1968) 573

[26] R Sharp, Local limit theorems for free groups, Math. Ann. 321 (2001) 889

[27] D W Stroock, Probability theory, an analytic view, Cambridge Univ. Press (1993)

[28] W P Thurston, The geometry and topology of 3–manifolds, lecture notes, Princeton University (1978–1981)

Cité par Sources :