Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let , , denote the family of motivic truncated Brown–Peterson spectra over . We employ a “local-to-global” philosophy in order to compute the bigraded homotopy groups of . Along the way, we produce a computation of the homotopy groups of over , prove a motivic Hasse principle for the spectra , and reprove several classical and recent theorems about the –theory of particular fields in a streamlined fashion. We also compute the bigraded homotopy groups of the 2–complete algebraic cobordism spectrum over .
Ormsby, Kyle M 1 ; Østvær, Paul 2
@article{GT_2013_17_3_a7, author = {Ormsby, Kyle M and {\O}stv{\ae}r, Paul}, title = {Motivic {Brown{\textendash}Peterson} invariants of the rationals}, journal = {Geometry & topology}, pages = {1671--1706}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1671}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/} }
TY - JOUR AU - Ormsby, Kyle M AU - Østvær, Paul TI - Motivic Brown–Peterson invariants of the rationals JO - Geometry & topology PY - 2013 SP - 1671 EP - 1706 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/ DO - 10.2140/gt.2013.17.1671 ID - GT_2013_17_3_a7 ER -
Ormsby, Kyle M; Østvær, Paul. Motivic Brown–Peterson invariants of the rationals. Geometry & topology, Tome 17 (2013) no. 3, pp. 1671-1706. doi : 10.2140/gt.2013.17.1671. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/
[1] Algebraic Morava K–theories, Invent. Math. 151 (2003) 381
,[2] The motivic Adams spectral sequence, Geom. Topol. 14 (2010) 967
, ,[3] Ext and the motivic Steenrod algebra over R, J. Pure Appl. Algebra 215 (2011) 715
,[4] From algebraic cobordism to motivic cohomology
,[5] The motivic Steenrod algebra in positive characteristic (2012)
, , ,[6] On real-oriented Johnson–Wilson cohomology, Algebr. Geom. Topol. 2 (2002) 937
,[7] Some remarks on real and algebraic cobordism, K–Theory 22 (2001) 335
, ,[8] Convergence of the motivic Adams spectral sequence, J. K–Theory 7 (2011) 573
, , ,[9] Remarks on motivic homotopy theory over algebraically closed fields, J. K-Theory 7 (2011) 55
, , ,[10] The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150
,[11] Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970) 318
,[12] An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic K–theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes XV, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357
,[13] The stable A1–connectivity theorems, K–Theory 35 (2005)
,[14] A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45
, ,[15] Existence and uniqueness of E∞–structures on motivic K-theory spectra
, , ,[16] Chern classes, K–theory and Landweber exactness over nonregular base schemes, from: "Motives and algebraic cycles" (editors R de Jeu, J D Lewis), Fields Inst. Commun. 56, Amer. Math. Soc. (2009) 307
, , ,[17] Motivic Landweber exactness, Doc. Math. 14 (2009) 551
, , ,[18] Cohomology of number fields, 323, Springer (2008)
, , ,[19] Motivic invariants of p–adic fields, J. K–Theory 7 (2011) 597
,[20] Motivic invariants of low-dimensional fields, in preparation
, ,[21] On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969) 1293
,[22] Complex cobordism and stable homotopy groups of spheres, 121, Academic Press (1986)
,[23] Two-primary algebraic K–theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000) 1
, ,[24] Motives and modules over motivic cohomology, C. R. Math. Acad. Sci. Paris 342 (2006) 751
, ,[25] Modules over motivic cohomology, Adv. Math. 219 (2008) 689
, ,[26] Relations between slices and quotients of the algebraic cobordism spectrum, Homology, Homotopy Appl. 12 (2010) 335
,[27] On the K–theory of local fields, from: "Proceedings of the Luminy conference on algebraic, K–theory (1983)" (editors E M Friedlander, M Karoubi), J. Pure Appl. Algebra 34 (1984) 301
,[28] Brown–Peterson spectra in stable A1–homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001) 47
,[29] A1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, Vol. I", Doc. Math. Extra Vol. I (1998) 579
,[30] Motivic cohomology with Z∕2–coefficients, Publ. Math. Inst. Hautes Études Sci. (2003) 59
,[31] Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. (2003) 1
,[32] Motivic Eilenberg–Maclane spaces, Publ. Math. Inst. Hautes Études Sci. (2010) 1
,[33] Applications of Atiyah–Hirzebruch spectral sequences for motivic cobordism, Proc. London Math. Soc. 90 (2005) 783
,Cité par Sources :