Motivic Brown–Peterson invariants of the rationals
Geometry & topology, Tome 17 (2013) no. 3, pp. 1671-1706.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let BPn, 0 n , denote the family of motivic truncated Brown–Peterson spectra over . We employ a “local-to-global” philosophy in order to compute the bigraded homotopy groups of BPn. Along the way, we produce a computation of the homotopy groups of BPn over 2, prove a motivic Hasse principle for the spectra BPn, and reprove several classical and recent theorems about the K–theory of particular fields in a streamlined fashion. We also compute the bigraded homotopy groups of the 2–complete algebraic cobordism spectrum MGL over .

DOI : 10.2140/gt.2013.17.1671
Classification : 55T15, 19D50, 19E15
Keywords: motivic Adams spectral sequence, algebraic cobordism, algebraic $K$–theory, Hasse principle

Ormsby, Kyle M 1 ; Østvær, Paul 2

1 Department of Mathematics, MIT, Cambridge, MA 02139, USA
2 Department of Mathematics, University of Oslo, 0316 Oslo, Norway, Department of Mathematics, MIT, Cambridge, MA 02139, USA
@article{GT_2013_17_3_a7,
     author = {Ormsby, Kyle M and {\O}stv{\ae}r, Paul},
     title = {Motivic {Brown{\textendash}Peterson} invariants of the rationals},
     journal = {Geometry & topology},
     pages = {1671--1706},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1671},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/}
}
TY  - JOUR
AU  - Ormsby, Kyle M
AU  - Østvær, Paul
TI  - Motivic Brown–Peterson invariants of the rationals
JO  - Geometry & topology
PY  - 2013
SP  - 1671
EP  - 1706
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/
DO  - 10.2140/gt.2013.17.1671
ID  - GT_2013_17_3_a7
ER  - 
%0 Journal Article
%A Ormsby, Kyle M
%A Østvær, Paul
%T Motivic Brown–Peterson invariants of the rationals
%J Geometry & topology
%D 2013
%P 1671-1706
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/
%R 10.2140/gt.2013.17.1671
%F GT_2013_17_3_a7
Ormsby, Kyle M; Østvær, Paul. Motivic Brown–Peterson invariants of the rationals. Geometry & topology, Tome 17 (2013) no. 3, pp. 1671-1706. doi : 10.2140/gt.2013.17.1671. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1671/

[1] S Borghesi, Algebraic Morava K–theories, Invent. Math. 151 (2003) 381

[2] D Dugger, D C Isaksen, The motivic Adams spectral sequence, Geom. Topol. 14 (2010) 967

[3] M A Hill, Ext and the motivic Steenrod algebra over R, J. Pure Appl. Algebra 215 (2011) 715

[4] M Hoyois, From algebraic cobordism to motivic cohomology

[5] M Hoyois, S Kelly, P A Østvær, The motivic Steenrod algebra in positive characteristic (2012)

[6] P Hu, On real-oriented Johnson–Wilson cohomology, Algebr. Geom. Topol. 2 (2002) 937

[7] P Hu, I Kriz, Some remarks on real and algebraic cobordism, K–Theory 22 (2001) 335

[8] P Hu, I Kriz, K Ormsby, Convergence of the motivic Adams spectral sequence, J. K–Theory 7 (2011) 573

[9] P Hu, I Kriz, K Ormsby, Remarks on motivic homotopy theory over algebraically closed fields, J. K-Theory 7 (2011) 55

[10] J Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958) 150

[11] J Milnor, Algebraic K–theory and quadratic forms, Invent. Math. 9 (1969/1970) 318

[12] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic K–theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes XV, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[13] F Morel, The stable A1–connectivity theorems, K–Theory 35 (2005)

[14] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45

[15] N Naumann, M Spitzweck, P A Østvær, Existence and uniqueness of E∞–structures on motivic K-theory spectra

[16] N Naumann, M Spitzweck, P A Østvær, Chern classes, K–theory and Landweber exactness over nonregular base schemes, from: "Motives and algebraic cycles" (editors R de Jeu, J D Lewis), Fields Inst. Commun. 56, Amer. Math. Soc. (2009) 307

[17] N Naumann, M Spitzweck, P A Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009) 551

[18] J Neukirch, A Schmidt, K Wingberg, Cohomology of number fields, 323, Springer (2008)

[19] K M Ormsby, Motivic invariants of p–adic fields, J. K–Theory 7 (2011) 597

[20] K Ormsby, P A Østvær, Motivic invariants of low-dimensional fields, in preparation

[21] D Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969) 1293

[22] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 121, Academic Press (1986)

[23] J Rognes, C Weibel, Two-primary algebraic K–theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000) 1

[24] O Röndigs, P A Østvær, Motives and modules over motivic cohomology, C. R. Math. Acad. Sci. Paris 342 (2006) 751

[25] O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008) 689

[26] M Spitzweck, Relations between slices and quotients of the algebraic cobordism spectrum, Homology, Homotopy Appl. 12 (2010) 335

[27] A A Suslin, On the K–theory of local fields, from: "Proceedings of the Luminy conference on algebraic, K–theory (1983)" (editors E M Friedlander, M Karoubi), J. Pure Appl. Algebra 34 (1984) 301

[28] G Vezzosi, Brown–Peterson spectra in stable A1–homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001) 47

[29] V Voevodsky, A1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, Vol. I", Doc. Math. Extra Vol. I (1998) 579

[30] V Voevodsky, Motivic cohomology with Z∕2–coefficients, Publ. Math. Inst. Hautes Études Sci. (2003) 59

[31] V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. (2003) 1

[32] V Voevodsky, Motivic Eilenberg–Maclane spaces, Publ. Math. Inst. Hautes Études Sci. (2010) 1

[33] N Yagita, Applications of Atiyah–Hirzebruch spectral sequences for motivic cobordism, Proc. London Math. Soc. 90 (2005) 783

Cité par Sources :