Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be Teichmüller space of a closed surface of genus at least . We describe an action of the circle on , which limits to the earthquake flow when one of the parameters goes to a measured lamination in the Thurston boundary of . This circle action shares some of the main properties of the earthquake flow, for instance it satisfies an extension of Thurston’s Earthquake Theorem and it has a complex extension which is analogous and limits to complex earthquakes. Moreover, a related circle action on extends to the product of two copies of the universal Teichmüller space.
Bonsante, Francesco 1 ; Mondello, Gabriele 2 ; Schlenker, Jean-Marc 3
@article{GT_2013_17_1_a4, author = {Bonsante, Francesco and Mondello, Gabriele and Schlenker, Jean-Marc}, title = {A cyclic extension of the earthquake flow {I}}, journal = {Geometry & topology}, pages = {157--234}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2013}, doi = {10.2140/gt.2013.17.157}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/} }
TY - JOUR AU - Bonsante, Francesco AU - Mondello, Gabriele AU - Schlenker, Jean-Marc TI - A cyclic extension of the earthquake flow I JO - Geometry & topology PY - 2013 SP - 157 EP - 234 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/ DO - 10.2140/gt.2013.17.157 ID - GT_2013_17_1_a4 ER -
%0 Journal Article %A Bonsante, Francesco %A Mondello, Gabriele %A Schlenker, Jean-Marc %T A cyclic extension of the earthquake flow I %J Geometry & topology %D 2013 %P 157-234 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/ %R 10.2140/gt.2013.17.157 %F GT_2013_17_1_a4
Bonsante, Francesco; Mondello, Gabriele; Schlenker, Jean-Marc. A cyclic extension of the earthquake flow I. Geometry & topology, Tome 17 (2013) no. 1, pp. 157-234. doi : 10.2140/gt.2013.17.157. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/
[1] Spaces of mappings into a manifold of negative curvature, Dokl. Akad. Nauk SSSR 178 (1968) 13
,[2] Notes on : “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45 ; MR2328921] by G. Mess, Geom. Dedicata 126 (2007) 47
, , , , , , , ,[3] Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3, Geom. Dedicata 126 (2007) 71
, , ,[4] Prescribing Gauss curvature of surfaces in 3–dimensional spacetimes : application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier (Grenoble) 61 (2011) 511
, , ,[5] Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques
,[6] personal communication on work in progress, (2012)
,[7] Canonical Wick rotations in 3–dimensional gravity, Mem. Amer. Math. Soc. 198 (2009)
, ,[8] Cosmological time in (2 + 1)–gravity, Nuclear Phys. B 613 (2001) 330
, ,[9] Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010) 279
, ,[10] Minimal surfaces of higher topological structure, Ann. of Math. 40 (1939) 205
,[11] Projective structures, grafting and measured laminations, Geom. Topol. 12 (2008) 351
, ,[12] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109
, ,[13] A new proof that Teichmüller space is a cell, Trans. Amer. Math. Soc. 303 (1987) 257
, ,[14] Universal Teichmüller space, from: "Handbook of complex analysis : geometric function theory, Vol. 1" (editor R Kühnau), North-Holland (2002) 457
, ,[15] On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673
,[16] Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1
, ,[17] A characterization of compact convex polyhedra in hyperbolic 3–space, Invent. Math. 111 (1993) 77
, ,[18] The Gauss-Codazzi equations, Tensor 39 (1982) 15
,[19] Two-dimensional geometric variational problems, , John Wiley Sons Ltd. (1991)
,[20] The Nielsen realization problem, Ann. of Math. 117 (1983) 235
,[21] Minimal surfaces and particles in 3–manifolds, Geom. Dedicata 126 (2007) 187
, ,[22] On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637
, ,[23] A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994) 89
, ,[24] Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991) 307
,[25] Surfaces convexes dans l’espace hyperbolique et CP1–structures, J. London Math. Soc. 45 (1992) 549
,[26] The convex core of quasifuchsian manifolds with particles
, ,[27] Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985) 381
,[28] Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283
,[29] Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3
,[30] The classification of punctured-torus groups, Ann. of Math. 149 (1999) 559
,[31] Flows of SL2(R)–type on the cotangent space to Teichmüller space, in preparation
,[32] Quasi-Fuchsian manifolds with particles, J. Differential Geom. 83 (2009) 75
, ,[33] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211
,[34] Flat conformal structures and the classification of de Sitter manifolds, Comm. Anal. Geom. 7 (1999) 325
,[35] The grafting map of Teichmüller space, J. Amer. Math. Soc. 15 (2002) 893
, ,[36] Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998) 323
,[37] Hypersurfaces in Hn and the space of its horospheres, Geom. Funct. Anal. 12 (2002) 395
,[38] The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179
,[39] On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265
, ,[40] A comprehensive introduction to geometry, Vol. I-V, Publish or Perish (1970)
,[41] On isometric immersions of Riemannian manifolds, Bol. Soc. Brasil. Mat. 2 (1971) 23
,[42] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[43] The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449
,[44] Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991) 487
,[45] Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577
,Cité par Sources :