A cyclic extension of the earthquake flow I
Geometry & topology, Tome 17 (2013) no. 1, pp. 157-234.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let T be Teichmüller space of a closed surface of genus at least 2. We describe an action of the circle on T ×T, which limits to the earthquake flow when one of the parameters goes to a measured lamination in the Thurston boundary of T. This circle action shares some of the main properties of the earthquake flow, for instance it satisfies an extension of Thurston’s Earthquake Theorem and it has a complex extension which is analogous and limits to complex earthquakes. Moreover, a related circle action on T ×T extends to the product of two copies of the universal Teichmüller space.

DOI : 10.2140/gt.2013.17.157
Classification : 57M50
Keywords: anti-de Sitter, earthquakes, constant curvature surfaces, space-like surfaces

Bonsante, Francesco 1 ; Mondello, Gabriele 2 ; Schlenker, Jean-Marc 3

1 Dipartimento do Matematica, Università degli Studi di Pavia, Via Ferrata, 1, I-27100 Pavia, Italy
2 Università di Roma “La Sapienza”, Dipartimento di Matematica “Guido Castelnuovo”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
3 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
@article{GT_2013_17_1_a4,
     author = {Bonsante, Francesco and Mondello, Gabriele and Schlenker, Jean-Marc},
     title = {A cyclic extension of the earthquake flow {I}},
     journal = {Geometry & topology},
     pages = {157--234},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.157},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/}
}
TY  - JOUR
AU  - Bonsante, Francesco
AU  - Mondello, Gabriele
AU  - Schlenker, Jean-Marc
TI  - A cyclic extension of the earthquake flow I
JO  - Geometry & topology
PY  - 2013
SP  - 157
EP  - 234
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/
DO  - 10.2140/gt.2013.17.157
ID  - GT_2013_17_1_a4
ER  - 
%0 Journal Article
%A Bonsante, Francesco
%A Mondello, Gabriele
%A Schlenker, Jean-Marc
%T A cyclic extension of the earthquake flow I
%J Geometry & topology
%D 2013
%P 157-234
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/
%R 10.2140/gt.2013.17.157
%F GT_2013_17_1_a4
Bonsante, Francesco; Mondello, Gabriele; Schlenker, Jean-Marc. A cyclic extension of the earthquake flow I. Geometry & topology, Tome 17 (2013) no. 1, pp. 157-234. doi : 10.2140/gt.2013.17.157. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.157/

[1] S I Al’Ber, Spaces of mappings into a manifold of negative curvature, Dokl. Akad. Nauk SSSR 178 (1968) 13

[2] L Andersson, T Barbot, R Benedetti, F Bonsante, W M Goldman, F Labourie, K P Scannell, J M Schlenker, Notes on : “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45 ; MR2328921] by G. Mess, Geom. Dedicata 126 (2007) 47

[3] T Barbot, F Béguin, A Zeghib, Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3, Geom. Dedicata 126 (2007) 71

[4] T Barbot, F Béguin, A Zeghib, Prescribing Gauss curvature of surfaces in 3–dimensional spacetimes : application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier (Grenoble) 61 (2011) 511

[5] M Belraouti, Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques

[6] M Belraouti, personal communication on work in progress, (2012)

[7] R Benedetti, F Bonsante, Canonical Wick rotations in 3–dimensional gravity, Mem. Amer. Math. Soc. 198 (2009)

[8] R Benedetti, E Guadagnini, Cosmological time in (2 + 1)–gravity, Nuclear Phys. B 613 (2001) 330

[9] F Bonsante, J M Schlenker, Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010) 279

[10] J Douglas, Minimal surfaces of higher topological structure, Ann. of Math. 40 (1939) 205

[11] D Dumas, M Wolf, Projective structures, grafting and measured laminations, Geom. Topol. 12 (2008) 351

[12] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109

[13] A E Fischer, A J Tromba, A new proof that Teichmüller space is a cell, Trans. Amer. Math. Soc. 303 (1987) 257

[14] F P Gardiner, W J Harvey, Universal Teichmüller space, from: "Handbook of complex analysis : geometric function theory, Vol. 1" (editor R Kühnau), North-Holland (2002) 457

[15] P Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673

[16] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[17] C D Hodgson, I Rivin, A characterization of compact convex polyhedra in hyperbolic 3–space, Invent. Math. 111 (1993) 77

[18] H Jacobowitz, The Gauss-Codazzi equations, Tensor 39 (1982) 15

[19] J Jost, Two-dimensional geometric variational problems, , John Wiley Sons Ltd. (1991)

[20] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235

[21] K Krasnov, J M Schlenker, Minimal surfaces and particles in 3–manifolds, Geom. Dedicata 126 (2007) 187

[22] K Krasnov, J M Schlenker, On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637

[23] R S Kulkarni, U Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994) 89

[24] F Labourie, Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991) 307

[25] F Labourie, Surfaces convexes dans l’espace hyperbolique et CP1–structures, J. London Math. Soc. 45 (1992) 549

[26] C Lecuire, J M Schlenker, The convex core of quasifuchsian manifolds with particles

[27] B Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985) 381

[28] C T Mcmullen, Complex earthquakes and Teichmüller theory, J. Amer. Math. Soc. 11 (1998) 283

[29] G Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3

[30] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. 149 (1999) 559

[31] G Mondello, Flows of SL2(R)–type on the cotangent space to Teichmüller space, in preparation

[32] S Moroianu, J M Schlenker, Quasi-Fuchsian manifolds with particles, J. Differential Geom. 83 (2009) 75

[33] J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211

[34] K P Scannell, Flat conformal structures and the classification of de Sitter manifolds, Comm. Anal. Geom. 7 (1999) 325

[35] K P Scannell, M Wolf, The grafting map of Teichmüller space, J. Amer. Math. Soc. 15 (2002) 893

[36] J M Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998) 323

[37] J M Schlenker, Hypersurfaces in Hn and the space of its horospheres, Geom. Funct. Anal. 12 (2002) 395

[38] R M Schoen, The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179

[39] R Schoen, S T Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265

[40] M Spivak, A comprehensive introduction to geometry, Vol. I-V, Publish or Perish (1970)

[41] K Tenenblat, On isometric immersions of Riemannian manifolds, Bol. Soc. Brasil. Mat. 2 (1971) 23

[42] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[43] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449

[44] M Wolf, Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space, J. Differential Geom. 33 (1991) 487

[45] M Wolf, Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577

Cité par Sources :