Lipschitz retraction and distortion for subgroups of Out(Fn)
Geometry & topology, Tome 17 (2013) no. 3, pp. 1535-1579.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a free factor A of the rank n free group Fn, we characterize when the subgroup of Out(Fn) that stabilizes the conjugacy class of A is distorted in Out(Fn). We also prove that the image of the natural embedding of Aut(Fn1) in Aut(Fn) is nondistorted, that the stabilizer in Out(Fn) of the conjugacy class of any free splitting of Fn is nondistorted and we characterize when the stabilizer of the conjugacy class of an arbitrary free factor system of Fn is distorted. In all proofs of nondistortion, we prove the stronger statement that the subgroup in question is a Lipschitz retract. As applications we determine Dehn functions and automaticity for Out(Fn) and Aut(Fn).

DOI : 10.2140/gt.2013.17.1535
Classification : 20F28, 20F65, 20E05, 57M07
Keywords: Lipschitz retraction, distortion, subgroups of Out(F_n)

Handel, Michael 1 ; Mosher, Lee 2

1 Mathematics & Computer Science Department, Herbert H Lehman College (CUNY), Bronx, NY 10468-1589, USA
2 Department of Mathematics and Computer Science, Rutgers University Newark, Newark, NJ 07102, USA
@article{GT_2013_17_3_a5,
     author = {Handel, Michael and Mosher, Lee},
     title = {Lipschitz retraction and distortion for subgroups of {Out(Fn)}},
     journal = {Geometry & topology},
     pages = {1535--1579},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1535},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1535/}
}
TY  - JOUR
AU  - Handel, Michael
AU  - Mosher, Lee
TI  - Lipschitz retraction and distortion for subgroups of Out(Fn)
JO  - Geometry & topology
PY  - 2013
SP  - 1535
EP  - 1579
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1535/
DO  - 10.2140/gt.2013.17.1535
ID  - GT_2013_17_3_a5
ER  - 
%0 Journal Article
%A Handel, Michael
%A Mosher, Lee
%T Lipschitz retraction and distortion for subgroups of Out(Fn)
%J Geometry & topology
%D 2013
%P 1535-1579
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1535/
%R 10.2140/gt.2013.17.1535
%F GT_2013_17_3_a5
Handel, Michael; Mosher, Lee. Lipschitz retraction and distortion for subgroups of Out(Fn). Geometry & topology, Tome 17 (2013) no. 3, pp. 1535-1579. doi : 10.2140/gt.2013.17.1535. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1535/

[1] E Alibegović, Translation lengths in Out(Fn), Geom. Dedicata 92 (2002) 87

[2] M Bestvina, M Feighn, M Handel, The Tits alternative for Out(Fn), I : Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517

[3] M R Bridson, K Vogtmann, On the geometry of the automorphism group of a free group, Bull. London Math. Soc. 27 (1995) 544

[4] M R Bridson, K Vogtmann, The Dehn functions of Out(Fn) and Aut(Fn), Ann. Inst. Fourier 62 (2012) 1811

[5] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91

[6] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett (1992)

[7] S M Gersten, H B Short, Rational subgroups of biautomatic groups, Ann. of Math. 134 (1991) 125

[8] A Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995) 39

[9] A Hatcher, K Vogtmann, Isoperimetric inequalities for automorphism groups of free groups, Pacific J. Math. 173 (1996) 425

[10] T Hawkins, Continued fractions and the origins of the Perron–Frobenius theorem, Arch. Hist. Exact Sci. 62 (2008) 655

[11] G Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49

[12] H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[13] J Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1

[14] E H Spanier, Algebraic topology, McGraw-Hill (1966)

[15] A S Švarc, A volume invariant of coverings, Dokl. Akad. Nauk SSSR 105 (1955) 32

[16] K Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata 94 (2002) 1

Cité par Sources :