Intersections of quadrics, moment-angle manifolds and connected sums
Geometry & topology, Tome 17 (2013) no. 3, pp. 1497-1534.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For the intersections of real quadrics in n and in n associated to simple polytopes (also known as universal abelian covers and moment-angle manifolds, respectively) we obtain the following results:

(1)  Every such manifold of dimension greater than or equal to 5, connected up to the middle dimension and with free homology, is diffeomorphic to a connected sum of sphere products. The same is true for the manifolds in infinite families stemming from each of them. This includes the moment-angle manifolds for which the result was conjectured by F Bosio and L Meersseman.

(2)  The topological effect on the manifolds of cutting off vertices and edges from the polytope is described. Combined with the result in (1), this gives the same result for many more natural, infinite families.

(3)  As a consequence of (2), the cohomology rings of the two manifolds associated to a polytope need not be isomorphic, contradicting published results about complements of arrangements.

(4)  Auxiliary but general constructions and results in geometric topology.

DOI : 10.2140/gt.2013.17.1497
Classification : 14P25, 57R19, 57S25, 57R65
Keywords: quadrics

Gitler, Samuel 1 ; López de Medrano, Santiago 2

1 Department of Mathematics, Cinvestav, El Colegio Nacional, Centro de Investigacion IPN, Apartado Postal 14740, 14620 Mexico, DF, Mexico
2 Instituto de Matemáticas, Universidad Nacional Autónoma de México, 04510 Mexico, Mexico
@article{GT_2013_17_3_a4,
     author = {Gitler, Samuel and L\'opez de Medrano, Santiago},
     title = {Intersections of quadrics, moment-angle manifolds and connected sums},
     journal = {Geometry & topology},
     pages = {1497--1534},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1497},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1497/}
}
TY  - JOUR
AU  - Gitler, Samuel
AU  - López de Medrano, Santiago
TI  - Intersections of quadrics, moment-angle manifolds and connected sums
JO  - Geometry & topology
PY  - 2013
SP  - 1497
EP  - 1534
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1497/
DO  - 10.2140/gt.2013.17.1497
ID  - GT_2013_17_3_a4
ER  - 
%0 Journal Article
%A Gitler, Samuel
%A López de Medrano, Santiago
%T Intersections of quadrics, moment-angle manifolds and connected sums
%J Geometry & topology
%D 2013
%P 1497-1534
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1497/
%R 10.2140/gt.2013.17.1497
%F GT_2013_17_3_a4
Gitler, Samuel; López de Medrano, Santiago. Intersections of quadrics, moment-angle manifolds and connected sums. Geometry & topology, Tome 17 (2013) no. 3, pp. 1497-1534. doi : 10.2140/gt.2013.17.1497. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1497/

[1] D Allen, J La Luz, A counterexample to a conjecture of Bosio and Meersseman, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 37

[2] A Bahri, M Bendersky, F R Cohen, S Gitler, The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces, Adv. Math. 225 (2010) 1634

[3] A Bahri, M Bendersky, F R Cohen, S Gitler, Cup-products for the polyhedral product functor, Math. Proc. Cambridge Philos. Soc. 153 (2012) 457

[4] A Bahri, M Bendersky, F R Cohen, S Gitler, Operations on polyhedral products and a new topological construction of infinite families of toric manifolds (2012)

[5] I V Baskakov, Cohomology of K–powers of spaces and the combinatorics of simplicial divisions, Uspekhi Mat. Nauk 57 (2002) 147

[6] I V Baskakov, Triple Massey products in the cohomology of moment-angle complexes, Uspekhi Mat. Nauk 58 (2003) 199

[7] F Bosio, Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano–Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001) 1259

[8] F Bosio, L Meersseman, Real quadrics in Cn, complex manifolds and convex polytopes, Acta Math. 197 (2006) 53

[9] W Browder, Surgery on simply-connected manifolds, 65, Springer (1972)

[10] V M Buchstaber, T E Panov, Torus actions and their applications in topology and combinatorics, 24, Amer. Math. Soc. (2002)

[11] C Camacho, N H Kuiper, J Palis, The topology of holomorphic flows with singularity, Inst. Hautes Études Sci. Publ. Math. (1978) 5

[12] M Chaperon, Géométrie différentielle et singularités de systèmes dynamiques, 138–139, Société Mathématique de France (1986) 440

[13] M Chaperon, S López De Medrano, Birth of attracting compact invariant submanifolds diffeomorphic to moment-angle manifolds in generic families of dynamics, C. R. Math. Acad. Sci. Paris 346 (2008) 1099

[14] M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417

[15] G Denham, A I Suciu, Moment-angle complexes, monomial ideals and Massey products, Pure Appl. Math. Q. 3 (2007) 25

[16] V Gasharov, I Peeva, V Welker, Coordinate subspace arrangements and monomial ideals, from: "Computational commutative algebra and combinatorics" (editor T Hibi), Adv. Stud. Pure Math. 33, Math. Soc. Japan (2002) 65

[17] F González Acuña, Open Books, Lecture Notes, University of Iowa

[18] B Grünbaum, Convex polytopes, 221, Springer (2003)

[19] A Haefliger, Differentiable imbeddings, Bull. Amer. Math. Soc. 67 (1961) 109

[20] F Hirzebruch, private conversation (1986)

[21] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504

[22] J J Loeb, M Nicolau, On the complex geometry of a class of non-Kählerian manifolds, Israel J. Math. 110 (1999) 371

[23] M De Longueville, The ring structure on the cohomology of coordinate subspace arrangements, Math. Z. 233 (2000) 553

[24] D Mcgavran, Adjacent connected sums and torus actions, Trans. Amer. Math. Soc. 251 (1979) 235

[25] S López De Medrano, The space of Siegel leaves of a holomorphic vector field, from: "Holomorphic dynamics" (editors X Gómez-Mont, J Seade, A Verjovsky), Lecture Notes in Math. 1345, Springer (1988) 233

[26] S López De Medrano, Topology of the intersection of quadrics in Rn, from: "Algebraic topology" (editors G Carlsson, R L Cohen, H R Miller, D C Ravenel), Lecture Notes in Math. 1370, Springer (1989) 280

[27] S López De Medrano, A Verjovsky, A new family of complex, compact, nonsymplectic manifolds, Bol. Soc. Brasil. Mat. 28 (1997) 253

[28] L Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000) 79

[29] L Meersseman, A Verjovsky, Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math. 572 (2004) 57

[30] L Meersseman, A Verjovsky, Sur les variétés LV–M, from: "Singularities II" (editors J P Brasselet, J L Cisneros-Molina, D Massey, J Seade, B Teissier), Contemp. Math. 475, Amer. Math. Soc. (2008) 111

[31] C T C Wall, Classification of (n − 1)–connected 2n–manifolds, Ann. of Math. 75 (1962) 163

[32] C T C Wall, Classification problems in differential topology VI, Classification of (s − 1)–connected (2s + 1)–manifolds, Topology 6 (1967) 273

[33] C T C Wall, Stability, pencils and polytopes, Bull. London Math. Soc. 12 (1980) 401

Cité par Sources :