Homotopy completion and topological Quillen homology of structured ring spectra
Geometry & topology, Tome 17 (2013) no. 3, pp. 1325-1416.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Working in the context of symmetric spectra, we describe and study a homotopy completion tower for algebras and left modules over operads in the category of modules over a commutative ring spectrum (eg structured ring spectra). We prove a strong convergence theorem that shows that for 0–connected algebras and modules over a (1)–connected operad, the homotopy completion tower interpolates (in a strong sense) between topological Quillen homology and the identity functor.

By systematically exploiting strong convergence, we prove several theorems concerning the topological Quillen homology of algebras and modules over operads. These include a theorem relating finiteness properties of topological Quillen homology groups and homotopy groups that can be thought of as a spectral algebra analog of Serre’s finiteness theorem for spaces and H R Miller’s boundedness result for simplicial commutative rings (but in reverse form). We also prove absolute and relative Hurewicz Theorems and a corresponding Whitehead Theorem for topological Quillen homology. Furthermore, we prove a rigidification theorem, which we use to describe completion with respect to topological Quillen homology (or TQ–completion). The TQ–completion construction can be thought of as a spectral algebra analog of Sullivan’s localization and completion of spaces, Bousfield and Kan’s completion of spaces with respect to homology and Carlsson’s and Arone and Kankaanrinta’s completion and localization of spaces with respect to stable homotopy. We prove analogous results for algebras and left modules over operads in unbounded chain complexes.

DOI : 10.2140/gt.2013.17.1325
Classification : 18G55, 55P43, 55P48, 55U35
Keywords: topological Quillen homology, symmetric spectra, structured ring spectra, spectral algebra, completion, operads, model category

Harper, John E 1 ; Hess, Kathryn 2

1 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA, and, Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada
2 MATHGEOM, École Polytechnique Fédérale de Lausanne, MA B3 454, CH-1015 Lausanne, Switzerland
@article{GT_2013_17_3_a2,
     author = {Harper, John E and Hess, Kathryn},
     title = {Homotopy completion and topological {Quillen} homology of structured ring spectra},
     journal = {Geometry & topology},
     pages = {1325--1416},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2013},
     doi = {10.2140/gt.2013.17.1325},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1325/}
}
TY  - JOUR
AU  - Harper, John E
AU  - Hess, Kathryn
TI  - Homotopy completion and topological Quillen homology of structured ring spectra
JO  - Geometry & topology
PY  - 2013
SP  - 1325
EP  - 1416
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1325/
DO  - 10.2140/gt.2013.17.1325
ID  - GT_2013_17_3_a2
ER  - 
%0 Journal Article
%A Harper, John E
%A Hess, Kathryn
%T Homotopy completion and topological Quillen homology of structured ring spectra
%J Geometry & topology
%D 2013
%P 1325-1416
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1325/
%R 10.2140/gt.2013.17.1325
%F GT_2013_17_3_a2
Harper, John E; Hess, Kathryn. Homotopy completion and topological Quillen homology of structured ring spectra. Geometry & topology, Tome 17 (2013) no. 3, pp. 1325-1416. doi : 10.2140/gt.2013.17.1325. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1325/

[1] M André, Homologie des algèbres commutatives, 206, Springer (1974)

[2] G Arone, M Ching, Operads and chain rules for the calculus of functors, Astérisque 338, Soc. Math. France (2011) 158

[3] G Arone, M Kankaanrinta, A functorial model for iterated Snaith splitting with applications to calculus of functors, from: "Stable and unstable homotopy" (editors W G Dwyer, S Halperin, R Kane, S O Kochman, M E Mahowald, P S Selick), Fields Inst. Commun. 19, Amer. Math. Soc. (1998) 1

[4] A Baker, H Gilmour, P Reinhard, Topological André–Quillen homology for cellular commutative S–algebras, Abh. Math. Semin. Univ. Hambg. 78 (2008) 27

[5] A Baker, B Richter, Editors, Structured ring spectra, 315, Cambridge University Press (2004)

[6] M Basterra, André–Quillen cohomology of commutative S–algebras, J. Pure Appl. Algebra 144 (1999) 111

[7] M Basterra, M A Mandell, Homology and cohomology of E∞ ring spectra, Math. Z. 249 (2005) 903

[8] M Basterra, M A Mandell, Homology of En ring spectra and iterated THH, Algebr. Geom. Topol. 11 (2011) 939

[9] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972)

[10] G Carlsson, Equivariant stable homotopy and Sullivan’s conjecture, Invent. Math. 103 (1991) 497

[11] G Carlsson, Derived completions in stable homotopy theory, J. Pure Appl. Algebra 212 (2008) 550

[12] D Chataur, J L Rodríguez, J Scherer, Realizing operadic plus-constructions as nullifications, K–Theory 33 (2004) 1

[13] M Ching, Bar-cobar duality for operads in stable homotopy theory, J. Topol. 5 (2012) 39

[14] D Dugger, D C Isaksen, Topological hypercovers and A1–realizations, Math. Z. 246 (2004) 667

[15] W G Dwyer, Strong convergence of the Eilenberg–Moore spectral sequence, Topology 13 (1974) 255

[16] W G Dwyer, J P C Greenlees, S Iyengar, Duality in algebra and topology, Adv. Math. 200 (2006) 357

[17] W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 73

[18] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, 47, Amer. Math. Soc. (1997)

[19] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163

[20] B Fresse, Lie theory of formal groups over an operad, J. Algebra 202 (1998) 455

[21] B Fresse, Koszul duality of operads and homology of partition posets, from: "Homotopy theory : relations with algebraic geometry, group cohomology, and algebraic K–theory" (editors P Goerss, S Priddy), Contemp. Math. 346, Amer. Math. Soc. (2004) 115

[22] B Fresse, Modules over operads and functors, 1967, Springer (2009)

[23] V Ginzburg, M Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203

[24] P G Goerss, On the André–Quillen cohomology of commutative F2–algebras, Astérisque 186, Soc. Math. France (1990) 169

[25] P G Goerss, M J Hopkins, André–Quillen (co)-homology for simplicial algebras over simplicial operads, from: "Une dégustation topologique : Homotopy theory in the Swiss Alps" (editors D Arlettaz, K Hess), Contemp. Math. 265, Amer. Math. Soc. (2000) 41

[26] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151

[27] P G Goerss, J F Jardine, Simplicial homotopy theory, 174, Birkhäuser (1999)

[28] P Goerss, K Schemmerhorn, Model categories and simplicial methods, from: "Interactions between homotopy theory and algebra" (editors L L Avramov, J D Christensen, W G Dwyer, M A Mandell, B E Shipley), Contemp. Math. 436, Amer. Math. Soc. (2007) 3

[29] T G Goodwillie, Calculus, II : Analytic functors, K–Theory 5 (1991/92) 295

[30] T G Goodwillie, Calculus, III : Taylor series, Geom. Topol. 7 (2003) 645

[31] J E Harper, Homotopy theory of modules over operads in symmetric spectra, Algebr. Geom. Topol. 9 (2009) 1637

[32] J E Harper, Bar constructions and Quillen homology of modules over operads, Algebr. Geom. Topol. 10 (2010) 87

[33] J E Harper, Homotopy theory of modules over operads and non-Σ operads in monoidal model categories, J. Pure Appl. Algebra 214 (2010) 1407

[34] K Hess, A general framework for homotopic descent and codescent (2010)

[35] V Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997) 3291

[36] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[37] J Hornbostel, Preorientations of the derived motivic multiplicative group (2011)

[38] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[39] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[40] J F Jardine, Generalized étale cohomology theories, 146, Birkhäuser (1997)

[41] B Johnson, R Mccarthy, Deriving calculus with cotriples, Trans. Amer. Math. Soc. 356 (2004) 757

[42] I Kříž, J P May, Operads, algebras, modules and motives, Astérisque 233, Soc. Math. France (1995)

[43] N J Kuhn, Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces, Adv. Math. 201 (2006) 318

[44] N J Kuhn, Goodwillie towers and chromatic homotopy : An overview, from: "Proceedings of the Nishida Fest" (editors M Ando, N Minami, J Morava, W S Wilson), Geom. Topol. Monogr. 10 (2007) 245

[45] T Lawson, The plus-construction, Bousfield localization, and derived completion, J. Pure Appl. Algebra 214 (2010) 596

[46] A Lazarev, Cohomology theories for highly structured ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 201

[47] M Livernet, Homotopie rationnelle des algèbres sur une opérade, PhD thesis, Université Louis Pasteur (1998)

[48] M Livernet, On a plus-construction for algebras over an operad, K–Theory 18 (1999) 317

[49] S Mac Lane, Homology, 114, Academic (1963)

[50] S Mac Lane, Categories for the working mathematician, 5, Springer (1998)

[51] M A Mandell, E∞ algebras and p–adic homotopy theory, Topology 40 (2001) 43

[52] M A Mandell, Topological André–Quillen cohomology and E∞ André–Quillen cohomology, Adv. Math. 177 (2003) 227

[53] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001) 441

[54] R Mccarthy, V Minasian, On triples, operads, and generalized homogeneous functors

[55] J Mcclure, R Schwänzl, R Vogt, THH(R)≅R ⊗ S1 for E∞ ring spectra, J. Pure Appl. Algebra 121 (1997) 137

[56] J E Mcclure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture, from: "Recent progress in homotopy theory" (editors D M Davis, J Morava, G Nishida, W S Wilson, N Yagita), Contemp. Math. 293, Amer. Math. Soc. (2002) 153

[57] H Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984) 39

[58] V Minasian, André–Quillen spectral sequence for THH, Topology Appl. 129 (2003) 273

[59] D G Quillen, Homotopical algebra, 43, Springer (1967)

[60] D Quillen, On the (co-) homology of commutative rings, from: "Applications of Categorical Algebra" (editor A Heller), Proc. Sympos. Pure Math. 17, Amer. Math. Soc. (1970) 65

[61] C W Rezk, Spaces of algebra structures and cohomology of operads, PhD thesis, Massachusetts Institute of Technology (1996)

[62] B Richter, An Atiyah–Hirzebruch spectral sequence for topological André–Quillen homology, J. Pure Appl. Algebra 171 (2002) 59

[63] J Rognes, Galois extensions of structured ring spectra : Stably dualizable groups, 192, Amer. Math. Soc. (2008)

[64] J Rognes, Topological logarithmic structures, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 401

[65] S Schwede, Spectra in model categories and applications to the algebraic cotangent complex, J. Pure Appl. Algebra 120 (1997) 77

[66] S Schwede, S–modules and symmetric spectra, Math. Ann. 319 (2001) 517

[67] S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1

[68] S Schwede, An untitled book project about symmetric spectra, preprint (2007)

[69] S Schwede, On the homotopy groups of symmetric spectra, Geom. Topol. 12 (2008) 1313

[70] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. (3) 80 (2000) 491

[71] B Shipley, A convenient model category for commutative ring spectra, from: "Homotopy theory : Relations with algebraic geometry, group cohomology, and algebraic K–theory" (editors P Goerss, S Priddy), Contemp. Math. 346, Amer. Math. Soc. (2004) 473

[72] D Sullivan, Geometric topology, I : Localization, periodicity, and Galois symmetry, Massachusetts Institute of Technology (1971)

[73] D Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974) 1

[74] J M Turner, On simplicial commutative algebras with vanishing André–Quillen homology, Invent. Math. 142 (2000) 547

[75] C A Weibel, An introduction to homological algebra, 38, Cambridge University Press (1994)

Cité par Sources :