Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe a nef divisor on that is not numerically equivalent to an effective sum of boundary divisors.
Pixton, Aaron 1
@article{GT_2013_17_3_a1, author = {Pixton, Aaron}, title = {A nonboundary nef divisor on {M0,12}}, journal = {Geometry & topology}, pages = {1317--1324}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2013}, doi = {10.2140/gt.2013.17.1317}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1317/} }
Pixton, Aaron. A nonboundary nef divisor on M0,12. Geometry & topology, Tome 17 (2013) no. 3, pp. 1317-1324. doi : 10.2140/gt.2013.17.1317. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1317/
[1] Nef divisors on M0,n from GIT (2011)
, ,[2] Hypertrees, projections, and moduli of stable rational curves, J. Reine Angew. Math. 2013 (2013) 121
, ,[3] Chern classes of conformal blocks, from: "Compact moduli spaces and vector bundles" (editors V Alexeev, A Gibney, E Izadi, J Kollár, E Looijenga), Contemp. Math. 564, Amer. Math. Soc. (2012) 145
,[4] Numerical criteria for divisors on Mg to be ample, Compos. Math. 145 (2009) 1227
,[5] Towards the ample cone of Mg,n, J. Amer. Math. Soc. 15 (2002) 273
, , ,[6] Chow quotients of Grassmannians, I, from: "I M Gel’fand seminar" (editors S Gelfand, S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 29
,[7] Contractible extremal rays on M0,n
, ,[8] Fulton’s conjecture for M0,7, J. Lond. Math. Soc. 85 (2012) 1
,[9] A counterexample to Fulton’s conjecture on M0,n, J. Algebra 248 (2002) 780
,Cité par Sources :