Contact Anosov flows on hyperbolic 3–manifolds
Geometry & topology, Tome 17 (2013) no. 2, pp. 1225-1252.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Geodesic flows of Riemannian or Finsler manifolds have been the only known contact Anosov flows. We show that even in dimension 3 the world of contact Anosov flows is vastly larger via a surgery construction near an E–transverse Legendrian link that encompasses both the Handel–Thurston and Goodman surgeries and that produces flows not topologically orbit equivalent to any algebraic flow. This includes examples on many hyperbolic 3–manifolds, any of which have remarkable dynamical and geometric properties.

To the latter end we include a proof of a folklore theorem from 3–manifold topology: In the unit tangent bundle of a hyperbolic surface, the complement of a knot that projects to a filling geodesic is a hyperbolic 3–manifold.

DOI : 10.2140/gt.2013.17.1225
Classification : 37D20, 57N10, 57M50
Keywords: Anosov flow, 3–manifold, contact flow, hyperbolic manifold, surgery

Foulon, Patrick 1 ; Hasselblatt, Boris 2

1 Institut de Recherche Mathematique Avancée, UMR 7501 du Centre National de la Recherche Scientifique, 7 Rue René Descartes, 67084 Strasbourg Cedex, France, Centre International de Rencontres Mathématiques, 163 Avenue de Luminy, Case 916, 13288 Marseille Cedex 9, France
2 Department of Mathematics, Tufts University, Medford, MA 02155, USA
@article{GT_2013_17_2_a12,
     author = {Foulon, Patrick and Hasselblatt, Boris},
     title = {Contact {Anosov} flows on hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1225--1252},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.1225},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1225/}
}
TY  - JOUR
AU  - Foulon, Patrick
AU  - Hasselblatt, Boris
TI  - Contact Anosov flows on hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2013
SP  - 1225
EP  - 1252
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1225/
DO  - 10.2140/gt.2013.17.1225
ID  - GT_2013_17_2_a12
ER  - 
%0 Journal Article
%A Foulon, Patrick
%A Hasselblatt, Boris
%T Contact Anosov flows on hyperbolic 3–manifolds
%J Geometry & topology
%D 2013
%P 1225-1252
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1225/
%R 10.2140/gt.2013.17.1225
%F GT_2013_17_2_a12
Foulon, Patrick; Hasselblatt, Boris. Contact Anosov flows on hyperbolic 3–manifolds. Geometry & topology, Tome 17 (2013) no. 2, pp. 1225-1252. doi : 10.2140/gt.2013.17.1225. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1225/

[1] E Artin, Ein mechanisches System mit quasiergodischen Bahnen, Abh. Math. Semin. Univ. Hamb. 3 (1924) 170

[2] T Barbot, Caractérisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dynam. Systems 15 (1995) 247

[3] T Barbot, Generalizations of the Bonatti–Langevin example of Anosov flow and their classification up to topological equivalence, Comm. Anal. Geom. 6 (1998) 749

[4] T Barbot, Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. 34 (2001) 871

[5] T Barbot, De l'hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard de Lyon (2005)

[6] T Barthelmé, A new Laplace operator in Finsler geometry and periodic orbits of Anosov flows, PhD thesis, Université de Strasbourg (2012)

[7] T Barthelmé, S R Fenley, Knot theory of $R$–covered Anosov flows: Homotopy versus isotopy of closed orbits

[8] Y Benoist, P Foulon, F Labourie, Flots d'Anosov à distributions de Liapounov différentiables, I, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990) 395

[9] Y Benoist, P Foulon, F Labourie, Flots d'Anosov à distributions stable et instable différentiables, J. Amer. Math. Soc. 5 (1992) 33

[10] C Bonatti, R Langevin, Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension, Ergodic Theory Dynam. Systems 14 (1994) 633

[11] D Calegari, The geometry of $\mathbb{R}$–covered foliations, Geom. Topol. 4 (2000) 457

[12] D Calegari, Filling geodesics and hyperbolic complements, Geometry and the Imagination blog (2012)

[13] J P Christy, Anosov flows on three-manifolds (topology, dynamics), PhD thesis, University of California, Berkeley (1984)

[14] Y Fang, Thermodynamic invariants of Anosov flows and rigidity, Discrete Contin. Dyn. Syst. 24 (2009) 1185

[15] S R Fenley, Anosov flows in 3–manifolds, Ann. of Math. 139 (1994) 79

[16] S R Fenley, Quasigeodesic Anosov flows and homotopic properties of flow lines, J. Differential Geom. 41 (1995) 479

[17] S R Fenley, Foliations, topology and geometry of 3–manifolds: $\mathbb{R}$–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415

[18] S Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012) 1

[19] R Feres, A Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989) 427

[20] P Foulon, Entropy rigidity of Anosov flows in dimension three, Ergodic Theory Dynam. Systems 21 (2001) 1101

[21] P Foulon, B Hasselblatt, Zygmund strong foliations, Israel J. Math. 138 (2003) 157

[22] J Franks, B Williams, Anomalous Anosov flows, from: "Global theory of dynamical systems" (editors Z Nitecki, C Robinson), Lecture Notes in Math. 819, Springer (1980) 158

[23] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics 109, Cambridge Univ. Press (2008)

[24] É Ghys, Flots d'Anosov sur les 3–variétés fibrées en cercles, Ergodic Theory Dynam. Systems 4 (1984) 67

[25] É Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. 20 (1987) 251

[26] S Goodman, Dehn surgery on Anosov flows, from: "Geometric dynamics" (editor J Palis Jr.), Lecture Notes in Math. 1007, Springer (1983) 300

[27] U Hamenstädt, Regularity of time-preserving conjugacies for contact Anosov flows with $C^1$–Anosov splitting, Ergodic Theory Dynam. Systems 13 (1993) 65

[28] M Handel, W P Thurston, Anosov flows on new three manifolds, Invent. Math. 59 (1980) 95

[29] B Hasselblatt, Hyperbolic dynamical systems, from: "Handbook of dynamical systems 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 239

[30] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[31] A Hatcher, Notes on basic 3–manifold topology (2007)

[32] M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer (1976)

[33] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[34] E Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939) 261

[35] S Hurder, A Katok, Differentiability, rigidity and Godbillon–Vey classes for Anosov flows, Inst. Hautes Études Sci. Publ. Math. (1990) 5

[36] M Kanai, Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory Dynam. Systems 8 (1988) 215

[37] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser (2001)

[38] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge Univ. Press (1995)

[39] C Liverani, On contact Anosov flows, Ann. of Math. 159 (2004) 1275

[40] J Martinet, Formes de contact sur les variétés de dimension $3$, from: "Proceedings of Liverpool Singularities Symposium II" (editor C T C Wall), Lecture Notes in Math. 209, Springer (1971) 142

[41] D Matignon, Topologie en basse dimension: Remplissages de Dehn et théorie des n\oe uds, Habilitation à diriger des recherches, Université d’Aix-Marseille I (2004)

[42] Y Mitsumatsu, Anosov flows and non-Stein symplectic manifolds, Ann. Inst. Fourier (Grenoble) 45 (1995) 1407

[43] J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996)

[44] C Petronio, J Porti, Negatively oriented ideal triangulations and a proof of Thurston's hyperbolic Dehn filling theorem, Expo. Math. 18 (2000) 1

[45] J F Plante, Anosov flows, Amer. J. Math. 94 (1972) 729

[46] J F Plante, W P Thurston, Anosov flows and the fundamental group, Topology 11 (1972) 147

[47] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[48] W P Thurston, Three-manifolds, foliations and circles I

[49] W P Thurston, The geometry and topology of three-manifolds (1980)

[50] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982) 357

[51] P Tomter, Anosov flows on infra-homogeneous spaces, from: "Global analysis", Proc. Sympos. Pure Math. 14, Amer. Math. Soc. (1970) 299

[52] F Waldhausen, Eine Klasse von 3–dimensionalen Mannigfaltigkeiten I, Invent. Math. 3 (1967) 308

Cité par Sources :