Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a smooth complex projective variety , a line bundle of and , we say that is –transversal to if the complex is exact. We prove that if is –transversal to and satisfies , then the first order deformation of the pair in the direction extends to an analytic deformation.
We apply this result to improve known results on the paracanonical system of a variety of maximal Albanese dimension, due to Beauville in the case of surfaces and to Lazarsfeld and Popa in higher dimension. In particular, we prove the inequality for a variety of maximal Albanese dimension without irregular fibrations of Albanese general type.
Mendes Lopes, Margarida 1 ; Pardini, Rita 2 ; Pirola, Gian Pietro 3
@article{GT_2013_17_2_a11, author = {Mendes Lopes, Margarida and Pardini, Rita and Pirola, Gian Pietro}, title = {Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal {Albanese} dimension}, journal = {Geometry & topology}, pages = {1205--1223}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.1205}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/} }
TY - JOUR AU - Mendes Lopes, Margarida AU - Pardini, Rita AU - Pirola, Gian Pietro TI - Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension JO - Geometry & topology PY - 2013 SP - 1205 EP - 1223 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/ DO - 10.2140/gt.2013.17.1205 ID - GT_2013_17_2_a11 ER -
%0 Journal Article %A Mendes Lopes, Margarida %A Pardini, Rita %A Pirola, Gian Pietro %T Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension %J Geometry & topology %D 2013 %P 1205-1223 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/ %R 10.2140/gt.2013.17.1205 %F GT_2013_17_2_a11
Mendes Lopes, Margarida; Pardini, Rita; Pirola, Gian Pietro. Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension. Geometry & topology, Tome 17 (2013) no. 2, pp. 1205-1223. doi : 10.2140/gt.2013.17.1205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/
[1] On the solutions of analytic equations, Invent. Math. 5 (1968) 277
,[2] Annulation du $H^1$ et systèmes paracanoniques sur les surfaces, J. Reine Angew. Math. 388 (1988) 149
,[3] Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263
,[4] On the irregularity of the image of the Iitaka fibration, Comm. Algebra 32 (2004) 203
, ,[5] Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997) 243
, ,[6] Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389
, ,[7] Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991) 87
, ,[8] Derivative complex, BGG correspondence, and numerical inequalities for compact Kähler manifolds, Invent. Math. 182 (2010) 605
, ,[9] Brill-Noether loci for divisors on irregular varieties, to appear in Journal of European Math. Soc.
, , ,[10] Strong generic vanishing and a higher-dimensional Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009) 269
, ,[11] On subvarieties of abelian varieties, Invent. Math. 62 (1981) 459
,[12] Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361
,Cité par Sources :