Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension
Geometry & topology, Tome 17 (2013) no. 2, pp. 1205-1223.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a smooth complex projective variety X, a line bundle L of X and v H1(OX), we say that v is k–transversal to L if the complex Hk1(L) Hk(L) Hk+1(L) is exact. We prove that if v is 1–transversal to L and s H0(L) satisfies s v = 0, then the first order deformation (sv,Lv) of the pair (s,L) in the direction v extends to an analytic deformation.

We apply this result to improve known results on the paracanonical system of a variety of maximal Albanese dimension, due to Beauville in the case of surfaces and to Lazarsfeld and Popa in higher dimension. In particular, we prove the inequality pg(X) χ(KX) + q(X) 1 for a variety X of maximal Albanese dimension without irregular fibrations of Albanese general type.

DOI : 10.2140/gt.2013.17.1205
Classification : 14C20, 14J29, 32G10
Keywords: paracanonical system, irregular varieties, varieties of maximal Albanese dimension, numerical invariants

Mendes Lopes, Margarida 1 ; Pardini, Rita 2 ; Pirola, Gian Pietro 3

1 Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
2 Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, I-56127 Pisa, Italy
3 Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
@article{GT_2013_17_2_a11,
     author = {Mendes Lopes, Margarida and Pardini, Rita and Pirola, Gian Pietro},
     title = {Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal {Albanese} dimension},
     journal = {Geometry & topology},
     pages = {1205--1223},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.1205},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/}
}
TY  - JOUR
AU  - Mendes Lopes, Margarida
AU  - Pardini, Rita
AU  - Pirola, Gian Pietro
TI  - Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension
JO  - Geometry & topology
PY  - 2013
SP  - 1205
EP  - 1223
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/
DO  - 10.2140/gt.2013.17.1205
ID  - GT_2013_17_2_a11
ER  - 
%0 Journal Article
%A Mendes Lopes, Margarida
%A Pardini, Rita
%A Pirola, Gian Pietro
%T Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension
%J Geometry & topology
%D 2013
%P 1205-1223
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/
%R 10.2140/gt.2013.17.1205
%F GT_2013_17_2_a11
Mendes Lopes, Margarida; Pardini, Rita; Pirola, Gian Pietro. Continuous families of divisors, paracanonical systems and a new inequality for varieties of maximal Albanese dimension. Geometry & topology, Tome 17 (2013) no. 2, pp. 1205-1223. doi : 10.2140/gt.2013.17.1205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1205/

[1] M Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277

[2] A Beauville, Annulation du $H^1$ et systèmes paracanoniques sur les surfaces, J. Reine Angew. Math. 388 (1988) 149

[3] F Catanese, Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations, Invent. Math. 104 (1991) 263

[4] J A Chen, C D Hacon, On the irregularity of the image of the Iitaka fibration, Comm. Algebra 32 (2004) 203

[5] L Ein, R Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997) 243

[6] M Green, R Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987) 389

[7] M Green, R Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991) 87

[8] R Lazarsfeld, M Popa, Derivative complex, BGG correspondence, and numerical inequalities for compact Kähler manifolds, Invent. Math. 182 (2010) 605

[9] M Mendes Lopes, R Pardini, G P Pirola, Brill-Noether loci for divisors on irregular varieties, to appear in Journal of European Math. Soc.

[10] G Pareschi, M Popa, Strong generic vanishing and a higher-dimensional Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009) 269

[11] Z Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981) 459

[12] C Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. 26 (1993) 361

Cité par Sources :