Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the abstract commensurator of is composed of four building blocks: two isomorphism types of simple groups, the multiplicative group of the positive rationals and a cyclic group of order two. The main result establishes the simplicity of a certain group of piecewise linear homeomorphisms of the real line.
Burillo, José 1 ; Cleary, Sean 2 ; Röver, Claas E 3
@article{GT_2013_17_2_a10, author = {Burillo, Jos\'e and Cleary, Sean and R\"over, Claas E}, title = {Addendum to {{\textquotedblleft}Commensurations} and subgroups of finite index of {Thompson{\textquoteright}s} group {F{\textquotedblright}}}, journal = {Geometry & topology}, pages = {1199--1203}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.1199}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1199/} }
TY - JOUR AU - Burillo, José AU - Cleary, Sean AU - Röver, Claas E TI - Addendum to “Commensurations and subgroups of finite index of Thompson’s group F” JO - Geometry & topology PY - 2013 SP - 1199 EP - 1203 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1199/ DO - 10.2140/gt.2013.17.1199 ID - GT_2013_17_2_a10 ER -
%0 Journal Article %A Burillo, José %A Cleary, Sean %A Röver, Claas E %T Addendum to “Commensurations and subgroups of finite index of Thompson’s group F” %J Geometry & topology %D 2013 %P 1199-1203 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1199/ %R 10.2140/gt.2013.17.1199 %F GT_2013_17_2_a10
Burillo, José; Cleary, Sean; Röver, Claas E. Addendum to “Commensurations and subgroups of finite index of Thompson’s group F”. Geometry & topology, Tome 17 (2013) no. 2, pp. 1199-1203. doi : 10.2140/gt.2013.17.1199. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1199/
[1] The chameleon groups of Richard J Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996) 5
,[2] Commensurations and subgroups of finite index of Thompson's group $F$, Geom. Topol. 12 (2008) 1701
, , ,[3] Introductory notes on Richard Thompson's groups, Enseign. Math. 42 (1996) 215
, , ,Cité par Sources :