Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We obtain a formula for the generating series of (the push-forward under the Hilbert–Chow morphism of) the Hirzebruch homology characteristic classes of the Hilbert schemes of points for a smooth quasi-projective variety of arbitrary pure dimension. This result is based on a geometric construction of a motivic exponentiation generalizing the notion of motivic power structure, as well as on a formula for the generating series of the Hirzebruch homology characteristic classes of symmetric products. We apply the same methods for the calculation of generating series formulae for the Hirzebruch classes of the push-forwards of “virtual motives” of Hilbert schemes of a threefold. As corollaries, we obtain counterparts for the MacPherson (and Aluffi) Chern classes of Hilbert schemes of a smooth quasi-projective variety (resp. for threefolds). For a projective Calabi–Yau threefold, the latter yields a Chern class version of the dimension zero MNOP conjecture.
Cappell, Sylvain 1 ; Maxim, Laurentiu 2 ; Ohmoto, Toru 3 ; Schürmann, Jörg 4 ; Yokura, Shoji 5
@article{GT_2013_17_2_a9, author = {Cappell, Sylvain and Maxim, Laurentiu and Ohmoto, Toru and Sch\"urmann, J\"org and Yokura, Shoji}, title = {Characteristic classes of {Hilbert} schemes of points via symmetric products}, journal = {Geometry & topology}, pages = {1165--1198}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.1165}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1165/} }
TY - JOUR AU - Cappell, Sylvain AU - Maxim, Laurentiu AU - Ohmoto, Toru AU - Schürmann, Jörg AU - Yokura, Shoji TI - Characteristic classes of Hilbert schemes of points via symmetric products JO - Geometry & topology PY - 2013 SP - 1165 EP - 1198 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1165/ DO - 10.2140/gt.2013.17.1165 ID - GT_2013_17_2_a9 ER -
%0 Journal Article %A Cappell, Sylvain %A Maxim, Laurentiu %A Ohmoto, Toru %A Schürmann, Jörg %A Yokura, Shoji %T Characteristic classes of Hilbert schemes of points via symmetric products %J Geometry & topology %D 2013 %P 1165-1198 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1165/ %R 10.2140/gt.2013.17.1165 %F GT_2013_17_2_a9
Cappell, Sylvain; Maxim, Laurentiu; Ohmoto, Toru; Schürmann, Jörg; Yokura, Shoji. Characteristic classes of Hilbert schemes of points via symmetric products. Geometry & topology, Tome 17 (2013) no. 2, pp. 1165-1198. doi : 10.2140/gt.2013.17.1165. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1165/
[1] Riemann–Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. (1975) 101
, , ,[2] Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. 170 (2009) 1307
,[3] Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111
, , ,[4] Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008) 313
, ,[5] Faisceaux pervers, from: "Analysis and topology on singular spaces I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5
, , ,[6] Generating series in the cohomology of Hilbert schemes of points on surfaces, LMS J. Comput. Math. 10 (2007) 254
, ,[7] Elliptic genera of singular varieties, Duke Math. J. 116 (2003) 319
, ,[8] Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010) 1
, , ,[9] Characteristic classes of complex hypersurfaces, Adv. Math. 225 (2010) 2616
, , , ,[10] Equivariant characteristic classes of singular complex algebraic varieties, Comm. Pure Appl. Math. 65 (2012) 1722
, , , ,[11] Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991) 521
, ,[12] On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996) 479
,[13] On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987) 343
, ,[14] Riemann–Roch algebra, Grundl. Math. Wissen. 277, Springer (1985)
, ,[15] Mixed Hodge structures of configuration spaces
,[16] Adams operations and power structures, Mosc. Math. J. 9 (2009) 305
,[17] The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193
,[18] Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993) 235
, ,[19] A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004) 49
, , ,[20] Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006) 353
, , ,[21] Topological methods in algebraic geometry, Grundl. Math. Wissen. 131, Springer New York (1966)
,[22] The elliptic curve in the $S$–duality theory and Eisenstein series for Kac–Moody groups
,[23] Motivic measures, from: "Séminaire Bourbaki 1999/2000", Astérisque 276 (2002) 267
,[24] Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974) 423
,[25] Characteristic classes for singular varieties, from: "Proceedings of the Ninth Brazilian Mathematical Colloquium (Poços de Caldas, 1973), Vol II (Portuguese)", Inst. Mat. Pura Apl. (1977) 321
,[26] Gromov–Witten theory and Donaldson–Thomas theory I, Compos. Math. 142 (2006) 1263
, , , ,[27] Das Lefschetz–Riemann–Roch–Theorem für singuläre Varietäten, Bonner Mathematische Schriften 106, Universität Bonn Mathematisches Institut (1978)
,[28] Characteristic classes of the Hilbert schemes of points on non-compact simply-connected surfaces, JP J. Geom. Topol. 8 (2008) 7
,[29] Generating functions of orbifold Chern classes I: Symmetric products, Math. Proc. Cambridge Philos. Soc. 144 (2008) 423
,[30] Nearby cycles and characteristic classes of singular spaces, from: "Singularities in Geometry and Topology (Strasbourg 2009)" (editors V Blanlœil, T Ohmoto), IRMA Lectures in Mathematics and Theoretical Physics 20, European Math. Soc. (2012) 181
,[31] A singular Riemann–Roch for Hirzebruch characteristics, from: "Singularities Symposium—\L ojasiewicz 70 (Kraków, 1996; Warsaw, 1996)", Banach Center Publ. 44, Polish Acad. Sci. (1998) 257
,Cité par Sources :