Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a conjecture of Dürr, Kabanov and Okonek that provides an algebro-geometric theory of Seiberg–Witten invariants for all smooth projective surfaces. Our main technique is the cosection localization principle (Kiem and Li [arXiv:1007.3085]) of virtual cycles.
Chang, Huai-liang 1 ; Kiem, Young-Hoon 2
@article{GT_2013_17_2_a8, author = {Chang, Huai-liang and Kiem, Young-Hoon}, title = {Poincar\'e invariants are {Seiberg{\textendash}Witten} invariants}, journal = {Geometry & topology}, pages = {1149--1163}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.1149}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/} }
TY - JOUR AU - Chang, Huai-liang AU - Kiem, Young-Hoon TI - Poincaré invariants are Seiberg–Witten invariants JO - Geometry & topology PY - 2013 SP - 1149 EP - 1163 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/ DO - 10.2140/gt.2013.17.1149 ID - GT_2013_17_2_a8 ER -
Chang, Huai-liang; Kiem, Young-Hoon. Poincaré invariants are Seiberg–Witten invariants. Geometry & topology, Tome 17 (2013) no. 2, pp. 1149-1163. doi : 10.2140/gt.2013.17.1149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/
[1] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[2] Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257
,[3] The Seiberg–Witten equations and $4$-manifold topology, Bull. Amer. Math. Soc. 33 (1996) 45
,[4] Poincaré invariants, Topology 46 (2007) 225
, , ,[5] Obstruction bundles, semiregularity, and Seiberg–Witten invariants, Comm. Anal. Geom. 7 (1999) 451
, ,[6] Donaldson = Seiberg–Witten from Mochizuki's formula and instanton counting, Publ. Res. Inst. Math. Sci. 47 (2011) 307
, , ,[7] Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991) 87
, ,[8] Localizing virtual cycles by cosections, to appear in Journal of American Mathematical Society
, ,[9] Low degree GW invariants of spin surfaces, Pure Appl. Math. Q. 7 (2011) 1449
, ,[10] Low degree GW invariants of surfaces, II, Sci. China Math. 54 (2011) 1679
, ,[11] Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573
, ,[12] Algebraic geometric interpretation of Donaldson's polynomial invariants, J. Differential Geom. 37 (1993) 417
,[13] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[14] Comparison of algebraic and symplectic Gromov–Witten invariants, Asian J. Math. 3 (1999) 689
, ,[15] Donaldson type invariants for algebraic surfaces: transition of moduli stacks, Lecture Notes in Mathematics 1972, Springer (2009)
,[16] Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993) 449
,[17] Algebraic and symplectic Gromov–Witten invariants coincide, Ann. Inst. Fourier (Grenoble) 49 (1999) 1743
,[18] $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453
,[19] Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769
,Cité par Sources :