Poincaré invariants are Seiberg–Witten invariants
Geometry & topology, Tome 17 (2013) no. 2, pp. 1149-1163.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a conjecture of Dürr, Kabanov and Okonek that provides an algebro-geometric theory of Seiberg–Witten invariants for all smooth projective surfaces. Our main technique is the cosection localization principle (Kiem and Li [arXiv:1007.3085]) of virtual cycles.

DOI : 10.2140/gt.2013.17.1149
Classification : 14J80
Keywords: Poincaré invariant, Seiberg–Witten invariants, virtual cycles

Chang, Huai-liang 1 ; Kiem, Young-Hoon 2

1 Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
2 Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, South Korea
@article{GT_2013_17_2_a8,
     author = {Chang, Huai-liang and Kiem, Young-Hoon},
     title = {Poincar\'e invariants are {Seiberg{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {1149--1163},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.1149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/}
}
TY  - JOUR
AU  - Chang, Huai-liang
AU  - Kiem, Young-Hoon
TI  - Poincaré invariants are Seiberg–Witten invariants
JO  - Geometry & topology
PY  - 2013
SP  - 1149
EP  - 1163
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/
DO  - 10.2140/gt.2013.17.1149
ID  - GT_2013_17_2_a8
ER  - 
%0 Journal Article
%A Chang, Huai-liang
%A Kiem, Young-Hoon
%T Poincaré invariants are Seiberg–Witten invariants
%J Geometry & topology
%D 2013
%P 1149-1163
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/
%R 10.2140/gt.2013.17.1149
%F GT_2013_17_2_a8
Chang, Huai-liang; Kiem, Young-Hoon. Poincaré invariants are Seiberg–Witten invariants. Geometry & topology, Tome 17 (2013) no. 2, pp. 1149-1163. doi : 10.2140/gt.2013.17.1149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1149/

[1] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[2] S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257

[3] S K Donaldson, The Seiberg–Witten equations and $4$-manifold topology, Bull. Amer. Math. Soc. 33 (1996) 45

[4] M Dürr, A Kabanov, C Okonek, Poincaré invariants, Topology 46 (2007) 225

[5] R Friedman, J W Morgan, Obstruction bundles, semiregularity, and Seiberg–Witten invariants, Comm. Anal. Geom. 7 (1999) 451

[6] L Göttsche, H Nakajima, K Yoshioka, Donaldson = Seiberg–Witten from Mochizuki's formula and instanton counting, Publ. Res. Inst. Math. Sci. 47 (2011) 307

[7] M Green, R Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991) 87

[8] Y H Kiem, J Li, Localizing virtual cycles by cosections, to appear in Journal of American Mathematical Society

[9] Y H Kiem, J Li, Low degree GW invariants of spin surfaces, Pure Appl. Math. Q. 7 (2011) 1449

[10] Y H Kiem, J Li, Low degree GW invariants of surfaces, II, Sci. China Math. 54 (2011) 1679

[11] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573

[12] J Li, Algebraic geometric interpretation of Donaldson's polynomial invariants, J. Differential Geom. 37 (1993) 417

[13] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[14] J Li, G Tian, Comparison of algebraic and symplectic Gromov–Witten invariants, Asian J. Math. 3 (1999) 689

[15] T Mochizuki, Donaldson type invariants for algebraic surfaces: transition of moduli stacks, Lecture Notes in Mathematics 1972, Springer (2009)

[16] J W Morgan, Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993) 449

[17] B Siebert, Algebraic and symplectic Gromov–Witten invariants coincide, Ann. Inst. Fourier (Grenoble) 49 (1999) 1743

[18] C H Taubes, $\mathrm{GR}=\mathrm{SW}$: counting curves and connections, J. Differential Geom. 52 (1999) 453

[19] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

Cité par Sources :