Betti numbers of finite volume orbifolds
Geometry & topology, Tome 17 (2013) no. 2, pp. 1113-1147.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the Betti numbers of a negatively curved orbifold are linearly bounded by its volume, generalizing a theorem of Gromov that establishes this bound for manifolds. An immediate corollary is that Betti numbers of a lattice in a rank-one Lie group are linearly bounded by its co-volume.

DOI : 10.2140/gt.2013.17.1113
Classification : 53C20
Keywords: orbifolds, homology, Betti numbers, negative curvature

Samet, Iddo 1

1 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
@article{GT_2013_17_2_a7,
     author = {Samet, Iddo},
     title = {Betti numbers of finite volume orbifolds},
     journal = {Geometry & topology},
     pages = {1113--1147},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2013},
     doi = {10.2140/gt.2013.17.1113},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/}
}
TY  - JOUR
AU  - Samet, Iddo
TI  - Betti numbers of finite volume orbifolds
JO  - Geometry & topology
PY  - 2013
SP  - 1113
EP  - 1147
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/
DO  - 10.2140/gt.2013.17.1113
ID  - GT_2013_17_2_a7
ER  - 
%0 Journal Article
%A Samet, Iddo
%T Betti numbers of finite volume orbifolds
%J Geometry & topology
%D 2013
%P 1113-1147
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/
%R 10.2140/gt.2013.17.1113
%F GT_2013_17_2_a7
Samet, Iddo. Betti numbers of finite volume orbifolds. Geometry & topology, Tome 17 (2013) no. 2, pp. 1113-1147. doi : 10.2140/gt.2013.17.1113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/

[1] M Abert, N Bergeron, I Biringer, T Gelander, N Nikolov, J Raimbault, I Samet, On the growth of $L^2$-invariants for sequences of lattices in Lie groups

[2] M Abert, N Bergeron, I Biringer, T Gelander, N Nikolov, J Raimbault, I Samet, On the growth of Betti numbers of locally symmetric spaces, C. R. Math. Acad. Sci. Paris 349 (2011) 831

[3] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985)

[4] G Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics 2, American Mathematical Society (1971)

[5] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[7] E E Floyd, Periodic maps via Smith theory, from: "Seminar on transformation groups" (editor A Borel), Annals of Mathematics Studies 46, Princeton University Press (1960) 35

[8] T Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Math. J. 124 (2004) 459

[9] T Gelander, Volume versus rank of lattices, J. Reine Angew. Math. 661 (2011) 237

[10] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5

[11] C Jordan, Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878) 89

[12] W Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994) 455

[13] W Magnus, A Karrass, D Solitar, Combinatorial group theory: presentations of groups in terms of generators and relations, Dover Publications (1976)

[14] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton Univ. Press (1963)

[15] M Olbrich, $L^2$-invariants of locally symmetric spaces, Doc. Math. 7 (2002) 219

[16] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972)

[17] I Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359

[18] V Schroeder, Finite volume and fundamental group on manifolds of negative curvature, J. Differential Geom. 20 (1984) 175

[19] N Steenrod, The topology of fibre bundles, Princeton Mathematical Series 14, Princeton Univ. Press (1951)

[20] W P Thurston, The geometry and topology of three-manifolds (1980)

Cité par Sources :