Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the Betti numbers of a negatively curved orbifold are linearly bounded by its volume, generalizing a theorem of Gromov that establishes this bound for manifolds. An immediate corollary is that Betti numbers of a lattice in a rank-one Lie group are linearly bounded by its co-volume.
Samet, Iddo 1
@article{GT_2013_17_2_a7, author = {Samet, Iddo}, title = {Betti numbers of finite volume orbifolds}, journal = {Geometry & topology}, pages = {1113--1147}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2013}, doi = {10.2140/gt.2013.17.1113}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/} }
Samet, Iddo. Betti numbers of finite volume orbifolds. Geometry & topology, Tome 17 (2013) no. 2, pp. 1113-1147. doi : 10.2140/gt.2013.17.1113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1113/
[1] On the growth of $L^2$-invariants for sequences of lattices in Lie groups
, , , , , , ,[2] On the growth of Betti numbers of locally symmetric spaces, C. R. Math. Acad. Sci. Paris 349 (2011) 831
, , , , , , ,[3] Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985)
, , ,[4] Lecture notes on nilpotent groups, Regional Conference Series in Mathematics 2, American Mathematical Society (1971)
,[5] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[6] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[7] Periodic maps via Smith theory, from: "Seminar on transformation groups" (editor A Borel), Annals of Mathematics Studies 46, Princeton University Press (1960) 35
,[8] Homotopy type and volume of locally symmetric manifolds, Duke Math. J. 124 (2004) 459
,[9] Volume versus rank of lattices, J. Reine Angew. Math. 661 (2011) 237
,[10] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5
,[11] Mémoire sur les équations différentielles linéaires à intégrale algébrique, J. Reine Angew. Math. 84 (1878) 89
,[12] Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994) 455
,[13] Combinatorial group theory: presentations of groups in terms of generators and relations, Dover Publications (1976)
, , ,[14] Morse theory, Annals of Mathematics Studies 51, Princeton Univ. Press (1963)
,[15] $L^2$-invariants of locally symmetric spaces, Doc. Math. 7 (2002) 219
,[16] Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 68, Springer (1972)
,[17] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 359
,[18] Finite volume and fundamental group on manifolds of negative curvature, J. Differential Geom. 20 (1984) 175
,[19] The topology of fibre bundles, Princeton Mathematical Series 14, Princeton Univ. Press (1951)
,[20] The geometry and topology of three-manifolds (1980)
,Cité par Sources :