Asymptotics of classical spin networks
Geometry & topology, Tome 17 (2013) no. 1, pp. 1-37.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A spin network is a cubic ribbon graph labeled by representations of SU(2). Spin networks are important in various areas of Mathematics (3–dimensional Quantum Topology), Physics (Angular Momentum, Classical and Quantum Gravity) and Chemistry (Atomic Spectroscopy). The evaluation of a spin network is an integer number. The main results of our paper are: (a) an existence theorem for the asymptotics of evaluations of arbitrary spin networks (using the theory of G–functions), (b) a rationality property of the generating series of all evaluations with a fixed underlying graph (using the combinatorics of the chromatic evaluation of a spin network), (c) rigorous effective computations of our results for some 6j–symbols using the Wilf–Zeilberger theory and (d) a complete analysis of the regular Cube 12j spin network (including a nonrigorous guess of its Stokes constants), in the appendix.

DOI : 10.2140/gt.2013.17.1
Classification : 57N10, 57M25
Keywords: Spin networks, ribbon graphs, $6j$–symbols, Racah coefficients, angular momentum, asymptotics, G-functions, Kauffman bracket, Jones polynomial, Wilf-Zeilberger method, Borel transform, enumerative combinatorics, recoupling, Nilsson

Garoufalidis, Stavros 1 ; van der Veen, Roland 2

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160, USA
2 Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
@article{GT_2013_17_1_a0,
     author = {Garoufalidis, Stavros and van der Veen, Roland},
     title = {Asymptotics of classical spin networks},
     journal = {Geometry & topology},
     pages = {1--37},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2013},
     doi = {10.2140/gt.2013.17.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1/}
}
TY  - JOUR
AU  - Garoufalidis, Stavros
AU  - van der Veen, Roland
TI  - Asymptotics of classical spin networks
JO  - Geometry & topology
PY  - 2013
SP  - 1
EP  - 37
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1/
DO  - 10.2140/gt.2013.17.1
ID  - GT_2013_17_1_a0
ER  - 
%0 Journal Article
%A Garoufalidis, Stavros
%A van der Veen, Roland
%T Asymptotics of classical spin networks
%J Geometry & topology
%D 2013
%P 1-37
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1/
%R 10.2140/gt.2013.17.1
%F GT_2013_17_1_a0
Garoufalidis, Stavros; van der Veen, Roland. Asymptotics of classical spin networks. Geometry & topology, Tome 17 (2013) no. 1, pp. 1-37. doi : 10.2140/gt.2013.17.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2013.17.1/

[1] A Abdesselam, On the volume conjecture for classical spin networks

[2] C C Adams, The knot book, W. H. Freeman and Co. (1994)

[3] Y André, Séries Gevrey de type arithmétique, I, Théorèmes de pureté et de dualité, Ann. of Math. 151 (2000) 705

[4] V Aquilanti, H M Haggard, A Hedeman, N Jeevanjee, R G Littlejohn, L Yu, Semiclassical mechanics of the Wigner 6j–Symbol

[5] C M Bender, S A Orszag, Advanced mathematical methods for scientists and engineers, I Asymptotic methods and perturbation theory, Springer (1999)

[6] L C Biedenharn, J D Louck, Angular momentum in quantum physics, 8, Addison-Wesley Publishing Co. (1981)

[7] L C Biedenharn, J D Louck, The Racah–Wigner algebra in quantum theory, 9, Addison-Wesley Publishing Co. (1981)

[8] S Bloch, D Kreimer, Mixed Hodge structures and renormalization in physics, Commun. Number Theory Phys. 2 (2008) 637

[9] L M Blumenthal, Theory and applications of distance geometry, , Chelsea Publishing Co. (1970)

[10] J S Carter, D E Flath, M Saito, The classical and quantum 6j–symbols, 43, Princeton Univ. Press (1995)

[11] F Costantino, Integrality of Kauffman brackets of trivalent graphs

[12] F Costantino, J Marché, Generating series and asymptotics of classical spin networks

[13] M Dupuis, E R Livine, Pushing the asymptotics of the 6j–symbol further, Phys. Rev. D 80 (2009) 024035

[14] J Engle, R Pereira, C Rovelli, Flipped spinfoam vertex and loop gravity, Nuclear Phys. B 798 (2008) 251

[15] S Garoufalidis, Applications of quantum invariants in low-dimensional topology, Topology 37 (1998) 219

[16] S Garoufalidis, G-functions and multisum versus holonomic sequences, Adv. Math. 220 (2009) 1945

[17] S Garoufalidis, What is a sequence of Nilsson type ?, from: "Interactions between hyperbolic geometry, quantum topology and number theory" (editors A Champanerkar, O Dasbach, E Kalfagianni, I Kofman, W Neumann, N Stoltzfus), Contemp. Math. 541, Amer. Math. Soc. (2011) 145

[18] S Garoufalidis, A Its, A Kapaev, M Mariño, Asymptotics of the instantons of Painlevé I

[19] S Garoufalidis, M Mariño, Universality and asymptotics of graph counting problems in non-orientable surfaces, J. Combin. Theory Ser. A 117 (2010) 715

[20] S Garoufalidis, R Van Der Veen, Asymptotics of quantum spin networks at a fixed root of unity, Math. Ann. (2011) 1

[21] D B Grünberg, P Moree, Sequences of enumerative geometry: congruences and asymptotics, Experiment. Math. 17 (2008) 409

[22] H M Haggard, R G Littlejohn, Asymptotics of the Wigner 9j–symbol, Classical and Quantum Gravity 27 (2010) 135010

[23] V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335

[24] R Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys 39 (1997) 296

[25] M Kauers, Mathematica, Software

[26] M Kauers, Guessing Handbook, RISC Report Series, Johannes Kepler University Linz, Austria, 09-07 (2009)

[27] L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of 3–manifolds, 134, Princeton Univ. Press (1994)

[28] A N Kirillov, N Y Reshetikhin, Representations of the algebra Uq(sl(2)),q-orthogonal polynomials and invariants of links, from: "Infinite-dimensional Lie algebras and groups" (editor V G Kac), Adv. Ser. Math. Phys. 7, World Sci. Publ., Teaneck, NJ (1989) 285

[29] R G Littlejohn, L Yu, Semiclassical Analysis of the Wigner 9J–Symbol with Small and Large Angular Momenta, To appear in Phys. Rev. A

[30] P D Miller, Applied asymptotic analysis, 75, Amer. Math. Soc. (2006)

[31] J P Moussouris, The chromatic evaluation of strand networks, from: "Advances in Twistor Theory" (editors L P Huston, R S Ward), Research Notes in Mathematics 37, Pitman (1979) 308

[32] J Murakami, H Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85

[33] F W J Olver, Asymptotics and special functions, , A K Peters Ltd. (1997)

[34] P Paule, A Riese, qZeil, Mathematica Software

[35] R Penrose, Angular Momentum: An approach to combinatorial space time, from: "Quantum Theory and Beyond" (editor T Bastin), Research Notes in Mathematics, Cambridge Univ. Press (1971) 151

[36] R Penrose, Applications of negative dimensional tensors, from: "Combinatorial Mathematics and its Applications, Proc. Conf.", Academic Press (1971) 221

[37] G Ponzano, T Regge, Semiclassical limit of Racah coefficients, from: "Spectroscopic and group theoretical methods in physics", Research Notes in Mathematics, North Holland (1968) 1

[38] G Racah, Theory of complex spectra I, Physical Rev. 61 (1946) 186

[39] G Racah, Theory of complex spectra II, Physical Rev. 61 (1942) 186

[40] G Racah, Theory of complex spectra III, Physical Rev. 62 (1942) 438

[41] G Racah, Theory of complex spectra IV, Physical Rev. 76 (1949) 1352

[42] J Roberts, Classical 6j–symbols and the tetrahedron, Geom. Topol. 3 (1999) 21

[43] J Roberts, Asymptotics and 6j-symbols, from: "Invariants of knots and 3–manifolds", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 245

[44] C Rovelli, L Smolin, Discreteness of area and volume in quantum gravity, Nuclear Phys. B 442 (1995) 593

[45] C L Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. (1929)

[46] V G Turaev, Quantum invariants of knots and 3–manifolds, 18, Walter de Gruyter Co. (1994)

[47] V G Turaev, O Y Viro, State sum invariants of 3–manifolds and quantum 6j–symbols, Topology 31 (1992) 865

[48] D A Varshalovich, A N Moskalev, V K Khersonskiĭ, Quantum theory of angular momentum, World Scientific Publishing Co. (1988)

[49] W Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications (1987)

[50] B W Westbury, A generating function for spin network evaluations, from: "Knot theory" (editors V F R Jones, J Kania-Bartoszyńska, J H Przytycki, P Traczyk, V G Turaev), Banach Center Publ. 42, Polish Acad. Sci. (1998) 447

[51] H Whitney, 2–Isomorphic Graphs, Amer. J. Math. 55 (1933) 245

[52] E P Wigner, On representations of certain finite groups, Amer. J. Math. 63 (1941) 57

[53] J Wimp, D Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985) 162

[54] D Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001) 945

Cité par Sources :