Lagrangian topology and enumerative geometry
Geometry & topology, Tome 16 (2012) no. 2, pp. 963-1052.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We analyze the properties of Lagrangian quantum homology (in the form constructed in our previous work, based on the pearl complex) to associate certain enumerative invariants to monotone Lagrangian submanifolds. The most interesting such invariant is given as the discriminant of a certain quadratic form. For 2–dimensional Lagrangians it corresponds geometrically to counting certain types of configurations involving pseudoholomorphic disks that are associated to triangles on the respective surface. We analyze various properties of these invariants and compute them and the related structures for a wide class of toric fibers. An appendix contains an explicit description of the orientation conventions and verifications required to establish quantum homology and the related structures over the integers.

DOI : 10.2140/gt.2012.16.963
Classification : 53D12, 53D40
Keywords: Lagrangian submanifold, quantum homology, Floer homology, quadratic form, toric manifold

Biran, Paul 1 ; Cornea, Octav 2

1 Department of Mathematics, ETH-Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
2 Department of Mathematics and Statistics, University of Montreal, CP 6128, succ. Centre-ville Montréal QC H3C 3J7, Canada
@article{GT_2012_16_2_a8,
     author = {Biran, Paul and Cornea, Octav},
     title = {Lagrangian topology and enumerative geometry},
     journal = {Geometry & topology},
     pages = {963--1052},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.963},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.963/}
}
TY  - JOUR
AU  - Biran, Paul
AU  - Cornea, Octav
TI  - Lagrangian topology and enumerative geometry
JO  - Geometry & topology
PY  - 2012
SP  - 963
EP  - 1052
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.963/
DO  - 10.2140/gt.2012.16.963
ID  - GT_2012_16_2_a8
ER  - 
%0 Journal Article
%A Biran, Paul
%A Cornea, Octav
%T Lagrangian topology and enumerative geometry
%J Geometry & topology
%D 2012
%P 963-1052
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.963/
%R 10.2140/gt.2012.16.963
%F GT_2012_16_2_a8
Biran, Paul; Cornea, Octav. Lagrangian topology and enumerative geometry. Geometry & topology, Tome 16 (2012) no. 2, pp. 963-1052. doi : 10.2140/gt.2012.16.963. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.963/

[1] L Abrams, Frobenius algebra structures in topological quantum field theory and quantum cohomology, PhD thesis, The Johns Hopkins University (1997)

[2] L Abrams, The quantum Euler class and the quantum cohomology of the Grassmannians, Israel J. Math. 117 (2000) 335

[3] M Audin, Torus actions on symplectic manifolds, Progress in Math. 93, Birkhäuser (2004)

[4] M Audin, M Damian, Théorie de Morse et homologie de Floer, Savoirs Actuels (Les Ulis), EDP Sciences (2010)

[5] M Audin, F Lalonde, L Polterovich, Symplectic rigidity: Lagrangian submanifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 271

[6] D Auroux, Mirror symmetry and $T$–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51

[7] D Auroux, Special Lagrangian fibrations, mirror symmetry and Calabi–Yau double covers, from: "Géométrie différentielle, physique mathématique, mathématiques et société, I", Astérisque 321, Soc. Math. France (2008) 99

[8] D Auroux, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, from: "Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry" (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, Int. Press (2009) 1

[9] A Banyaga, D Hurtubise, Lectures on Morse homology, Kluwer Texts in the Math. Sciences 29, Kluwer (2004)

[10] V V Batyrev, Quantum cohomology rings of toric manifolds, from: "Journées de Géométrie Algébrique d'Orsay (Orsay, 1992)", Astérisque 218, Soc. Math. France (1993) 9

[11] P Biran, O Cornea, Lagrangian topology and enumerative geometry

[12] P Biran, O Cornea, Quantum structures for Lagrangian submanifolds

[13] P Biran, O Cornea, A Lagrangian quantum homology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 1

[14] P Biran, O Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009) 2881

[15] C H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803

[16] C H Cho, Products of Floer cohomology of torus fibers in toric Fano manifolds, Comm. Math. Phys. 260 (2005) 613

[17] C H Cho, Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle, J. Geom. Phys. 58 (2008) 1465

[18] C H Cho, Y G Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006) 773

[19] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773

[20] B Crauder, R Miranda, Quantum cohomology of rational surfaces, from: "The moduli space of curves (Texel Island, 1994)" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 33

[21] A Dold, Lectures on algebraic topology, Grundl. Math. Wissen. 200, Springer (1980)

[22] Y Felix, J C Thomas, M Vigué-Poirrier, The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci. (2004) 235

[23] K Fukaya, Floer homology and mirror symmetry, I, from: "Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999)" (editors C Vafa, S T Yau), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 15

[24] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds

[25] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds II: Bulk deformations

[26] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Parts I–II, AMS/IP Studies in Advanced Math. 46, Amer. Math. Soc. (2009)

[27] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010) 23

[28] W Fulton, Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press (1993)

[29] M Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964) 59

[30] A B Givental, Homological geometry and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)" (editor S D Chatterji), Birkhäuser (1995) 472

[31] A Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry (Kobe/Kyoto, 1997)", World Sci. Publ. (1998) 107

[32] A B Givental, Private communication (March 2010)

[33] A Granville, Private communication (October 2010)

[34] D Hilbert, Theory of algebraic invariants, Cambridge Univ. Press (1993)

[35] K Hori, Linear models of supersymmetric D–branes, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ. (2001) 111

[36] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)" (editor S D Chatterji), Birkhäuser (1995) 120

[37] A Makhlouf, A comparison of deformations and geometric study of varieties of associative algebras, Int. J. Math. Math. Sci. (2007) 24

[38] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (1998)

[39] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publ. 52, Amer. Math. Soc. (2004)

[40] Y Ostrover, I Tyomkin, On the quantum homology algebra of toric Fano manifolds, Selecta Math. 15 (2009) 121

[41] D Salamon, Morse theory, the Conley index and Floer homology, Bull. London Math. Soc. 22 (1990) 113

[42] G Scheja, U Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278/279 (1975) 174

[43] M Schwarz, Morse homology, Progress in Math. 111, Birkhäuser (1993)

[44] C Vafa, K Hori, Mirror symmetry

Cité par Sources :