Rigidity for odd-dimensional souls
Geometry & topology, Tome 16 (2012) no. 2, pp. 957-962.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a new rigidity result for an open manifold M with nonnegative sectional curvature whose soul Σ M is odd-dimensional. Specifically, there exists a geodesic in Σ and a parallel vertical plane field along it with constant vertical curvature and vanishing normal curvature. Under the added assumption that the Sharafutdinov fibers are rotationally symmetric, this implies that for small r, the distance sphere Br(Σ) = {p Mdist(p,Σ) = r} contains an immersed flat cylinder, and thus could not have positive curvature.

DOI : 10.2140/gt.2012.16.957
Classification : 53C20
Keywords: Soul Theorem, nonnegative curvature, flat

Tapp, Kristopher 1

1 Department of Mathematics, Saint Joseph’s University, 5600 City Avenue, Philadelphia PA 19131, USA
@article{GT_2012_16_2_a7,
     author = {Tapp, Kristopher},
     title = {Rigidity for odd-dimensional souls},
     journal = {Geometry & topology},
     pages = {957--962},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.957},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.957/}
}
TY  - JOUR
AU  - Tapp, Kristopher
TI  - Rigidity for odd-dimensional souls
JO  - Geometry & topology
PY  - 2012
SP  - 957
EP  - 962
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.957/
DO  - 10.2140/gt.2012.16.957
ID  - GT_2012_16_2_a7
ER  - 
%0 Journal Article
%A Tapp, Kristopher
%T Rigidity for odd-dimensional souls
%J Geometry & topology
%D 2012
%P 957-962
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.957/
%R 10.2140/gt.2012.16.957
%F GT_2012_16_2_a7
Tapp, Kristopher. Rigidity for odd-dimensional souls. Geometry & topology, Tome 16 (2012) no. 2, pp. 957-962. doi : 10.2140/gt.2012.16.957. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.957/

[1] J Cheeger, D Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972) 413

[2] L Guijarro, G Walschap, The metric projection onto the soul, Trans. Amer. Math. Soc. 352 (2000) 55

[3] M Strake, G Walschap, $\Sigma$–flat manifolds and Riemannian submersions, Manuscripta Math. 64 (1989) 213

[4] K Tapp, Conditions for nonnegative curvature on vector bundles and sphere bundles, Duke Math. J. 116 (2003) 77

[5] K Tapp, Quasi-positive curvature on homogeneous bundles, J. Differential Geom. 65 (2003) 273

[6] B Wilking, Manifolds with positive sectional curvature almost everywhere, Invent. Math. 148 (2002) 117

Cité par Sources :