Long knots and maps between operads
Geometry & topology, Tome 16 (2012) no. 2, pp. 919-955.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We identify the space of tangentially straightened long knots in m, m 4, as the double loops on the space of derived operad maps from the associative operad into a version of the little m–disk operad. This verifies a conjecture of Kontsevich, Lambrechts and Turchin.

DOI : 10.2140/gt.2012.16.919
Classification : 18D50, 55P48, 18G55, 57Q45
Keywords: operad, long knot

Dwyer, William 1 ; Hess, Kathryn 2

1 Department of Mathematics, University of Notre Dame, Notre Dame IN 46556, USA
2 Institut de Géométrie, algèbre et topologie (IGAT), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
@article{GT_2012_16_2_a6,
     author = {Dwyer, William and Hess, Kathryn},
     title = {Long knots and maps between operads},
     journal = {Geometry & topology},
     pages = {919--955},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.919},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.919/}
}
TY  - JOUR
AU  - Dwyer, William
AU  - Hess, Kathryn
TI  - Long knots and maps between operads
JO  - Geometry & topology
PY  - 2012
SP  - 919
EP  - 955
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.919/
DO  - 10.2140/gt.2012.16.919
ID  - GT_2012_16_2_a6
ER  - 
%0 Journal Article
%A Dwyer, William
%A Hess, Kathryn
%T Long knots and maps between operads
%J Geometry & topology
%D 2012
%P 919-955
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.919/
%R 10.2140/gt.2012.16.919
%F GT_2012_16_2_a6
Dwyer, William; Hess, Kathryn. Long knots and maps between operads. Geometry & topology, Tome 16 (2012) no. 2, pp. 919-955. doi : 10.2140/gt.2012.16.919. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.919/

[1] J Adámek, J Rosický, E M Vitale, Algebraic theories, preprint (2008)

[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)

[3] D Dugger, Classification spaces of maps in model categories

[4] W G Dwyer, P S Hirschhorn, D M Kan, J H Smith, Homotopy limit functors on model categories and homotopical categories, Math. Surveys and Monogr. 113, Amer. Math. Soc. (2004)

[5] W G Dwyer, D M Kan, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980) 17

[6] W G Dwyer, D M Kan, Function complexes in homotopical algebra, Topology 19 (1980) 427

[7] W G Dwyer, D M Kan, Simplicial localizations of categories, J. Pure Appl. Algebra 17 (1980) 267

[8] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser (1999)

[9] T G Goodwillie, Excision estimates for spaces of homotopy equivalences, preprint (1995)

[10] T G Goodwillie, J R Klein, Multiple disjunction for spaces of Poincaré embeddings, J. Topol. 1 (2008) 761

[11] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory: Part II, Geom. Topol. 3 (1999) 103

[12] P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003)

[13] M Hovey, Model categories, Math. Surveys and Monogr. 63, Amer. Math. Soc. (1999)

[14] M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35

[15] A Lazarev, Spaces of multiplicative maps between highly structured ring spectra, from: "Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 237

[16] S Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1998)

[17] J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972)

[18] J P May, Simplicial objects in algebraic topology, Chicago Lectures in Math., Univ. of Chicago Press (1992)

[19] J E Mcclure, J H Smith, A solution of Deligne's Hochschild cohomology conjecture, from: "Recent progress in homotopy theory (Baltimore, MD, 2000)" (editors D M Davis, J Morava, G Nishida, W S Wilson, N Yagita), Contemp. Math. 293, Amer. Math. Soc. (2002) 153

[20] D G Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer (1967)

[21] C Rezk, Spaces of algebra structures and cohomology of operads, PhD thesis, Massachusetts Institute of Technology (1996)

[22] C Rezk, Every homotopy theory of simplicial algebras admits a proper model, Topology Appl. 119 (2002) 65

[23] D P Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006) 461

[24] M Weiss, Embeddings from the point of view of immersion theory: Part I, Geom. Topol. 3 (1999) 67

Cité par Sources :