Milnor invariants and the HOMFLYPT Polynomial
Geometry & topology, Tome 16 (2012) no. 2, pp. 889-917.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give formulas expressing Milnor invariants of an n–component link L in the 3–sphere in terms of the HOMFLYPT polynomial as follows. If the Milnor invariant μ̄L(J) vanishes for any sequence J with length at most k, then any Milnor μ̄–invariant μ̄L(I) with length between 3 and 2k + 1 can be represented as a combination of HOMFLYPT polynomial of knots obtained from the link by certain band sum operations. In particular, the “first nonvanishing” Milnor invariants can be always represented as such a linear combination.

DOI : 10.2140/gt.2012.16.889
Classification : 57M25, 57M27
Keywords: Milnor invariant, HOMFLYPT polynomial, clasper, string link, link-homotopy

Meilhan, Jean-Baptiste 1 ; Yasuhara, Akira 2

1 Institut Fourier, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d’Hères, France
2 Department of Mathematics, Tokyo Gakugei University, 4-1-1 Nukuikita-Machi, Koganei-shi, Tokyo 184-8501, Japan
@article{GT_2012_16_2_a5,
     author = {Meilhan, Jean-Baptiste and Yasuhara, Akira},
     title = {Milnor invariants and the {HOMFLYPT} {Polynomial}},
     journal = {Geometry & topology},
     pages = {889--917},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.889},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/}
}
TY  - JOUR
AU  - Meilhan, Jean-Baptiste
AU  - Yasuhara, Akira
TI  - Milnor invariants and the HOMFLYPT Polynomial
JO  - Geometry & topology
PY  - 2012
SP  - 889
EP  - 917
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/
DO  - 10.2140/gt.2012.16.889
ID  - GT_2012_16_2_a5
ER  - 
%0 Journal Article
%A Meilhan, Jean-Baptiste
%A Yasuhara, Akira
%T Milnor invariants and the HOMFLYPT Polynomial
%J Geometry & topology
%D 2012
%P 889-917
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/
%R 10.2140/gt.2012.16.889
%F GT_2012_16_2_a5
Meilhan, Jean-Baptiste; Yasuhara, Akira. Milnor invariants and the HOMFLYPT Polynomial. Geometry & topology, Tome 16 (2012) no. 2, pp. 889-917. doi : 10.2140/gt.2012.16.889. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/

[1] D Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13

[2] J C Cha, The effect of mutation on link concordance, 3-manifolds, and the Milnor invariants, J. Knot Theory Ramifications 15 (2006) 239

[3] T D Cochran, Concordance invariance of coefficients of Conway's link polynomial, Invent. Math. 82 (1985) 527

[4] C H Giffen, Link concordance implies link homotopy, Math. Scand. 45 (1979) 243

[5] D L Goldsmith, Concordance implies homotopy for classical links in $M^{3}$, Comment. Math. Helv. 54 (1979) 347

[6] M Gusarov, On $n$–equivalence of knots and invariants of finite degree, from: "Topology of manifolds and varieties" (editor O Viro), Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173

[7] N Habegger, X S Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990) 389

[8] N Habegger, G Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253

[9] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1

[10] S Horiuchi, The Jacobi diagram for a $C_n$–move and the HOMFLY polynomial, J. Knot Theory Ramifications 16 (2007) 227

[11] T Kanenobu, $\mathbf C_n$–moves and the HOMFLY polynomials of links, Bol. Soc. Mat. Mexicana 10 (2004) 263

[12] T Kanenobu, Y Miyazawa, HOMFLY polynomials as Vassiliev link invariants, from: "Knot theory (Warsaw, 1995)" (editors V F R Jones, J Kania-Bartoszynska, J H Przytycki, P Traczyk, V Turaev), Banach Center Publ. 42, Polish Acad. Sci. (1998) 165

[13] J Levine, A factorization of the Conway polynomial, Comment. Math. Helv. 74 (1999) 27

[14] W B R Lickorish, K C Millett, A polynomial invariant of oriented links, Topology 26 (1987) 107

[15] X S Lin, Power series expansions and invariants of links, from: "Geometric topology (Athens, GA, 1993)" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 184

[16] G Masbaum, A Vaintrob, Milnor numbers, spanning trees, and the Alexander–Conway polynomial, Adv. Math. 180 (2003) 765

[17] J B Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory Ramifications 14 (2005) 665

[18] J B Meilhan, A Yasuhara, On $C_n$–moves for links, Pacific J. Math. 238 (2008) 119

[19] J Milnor, Link groups, Ann. of Math. 59 (1954) 177

[20] J Milnor, Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S Lefschetz" (editors R H Fox, D C Spencer, A W Tucker), Princeton Univ. Press (1957) 280

[21] K Murasugi, On Milnor's invariant for links, Trans. Amer. Math. Soc. 124 (1966) 94

[22] M Polyak, On Milnor's triple linking number, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 77

[23] T Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269

[24] L Traldi, Milnor's invariants and the completions of link modules, Trans. Amer. Math. Soc. 284 (1984) 401

[25] L Traldi, Conway's potential function and its Taylor series, Kobe J. Math. 5 (1988) 233

[26] A Yasuhara, Classification of string links up to self delta-moves and concordance, Algebr. Geom. Topol. 9 (2009) 265

[27] A Yasuhara, Self delta-equivalence for links whose Milnor's isotopy invariants vanish, Trans. Amer. Math. Soc. 361 (2009) 4721

Cité par Sources :