Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give formulas expressing Milnor invariants of an –component link in the –sphere in terms of the HOMFLYPT polynomial as follows. If the Milnor invariant vanishes for any sequence with length at most , then any Milnor –invariant with length between and can be represented as a combination of HOMFLYPT polynomial of knots obtained from the link by certain band sum operations. In particular, the “first nonvanishing” Milnor invariants can be always represented as such a linear combination.
Meilhan, Jean-Baptiste 1 ; Yasuhara, Akira 2
@article{GT_2012_16_2_a5, author = {Meilhan, Jean-Baptiste and Yasuhara, Akira}, title = {Milnor invariants and the {HOMFLYPT} {Polynomial}}, journal = {Geometry & topology}, pages = {889--917}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, doi = {10.2140/gt.2012.16.889}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/} }
TY - JOUR AU - Meilhan, Jean-Baptiste AU - Yasuhara, Akira TI - Milnor invariants and the HOMFLYPT Polynomial JO - Geometry & topology PY - 2012 SP - 889 EP - 917 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/ DO - 10.2140/gt.2012.16.889 ID - GT_2012_16_2_a5 ER -
Meilhan, Jean-Baptiste; Yasuhara, Akira. Milnor invariants and the HOMFLYPT Polynomial. Geometry & topology, Tome 16 (2012) no. 2, pp. 889-917. doi : 10.2140/gt.2012.16.889. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.889/
[1] Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13
,[2] The effect of mutation on link concordance, 3-manifolds, and the Milnor invariants, J. Knot Theory Ramifications 15 (2006) 239
,[3] Concordance invariance of coefficients of Conway's link polynomial, Invent. Math. 82 (1985) 527
,[4] Link concordance implies link homotopy, Math. Scand. 45 (1979) 243
,[5] Concordance implies homotopy for classical links in $M^{3}$, Comment. Math. Helv. 54 (1979) 347
,[6] On $n$–equivalence of knots and invariants of finite degree, from: "Topology of manifolds and varieties" (editor O Viro), Adv. Soviet Math. 18, Amer. Math. Soc. (1994) 173
,[7] The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990) 389
, ,[8] The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253
, ,[9] Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1
,[10] The Jacobi diagram for a $C_n$–move and the HOMFLY polynomial, J. Knot Theory Ramifications 16 (2007) 227
,[11] $\mathbf C_n$–moves and the HOMFLY polynomials of links, Bol. Soc. Mat. Mexicana 10 (2004) 263
,[12] HOMFLY polynomials as Vassiliev link invariants, from: "Knot theory (Warsaw, 1995)" (editors V F R Jones, J Kania-Bartoszynska, J H Przytycki, P Traczyk, V Turaev), Banach Center Publ. 42, Polish Acad. Sci. (1998) 165
, ,[13] A factorization of the Conway polynomial, Comment. Math. Helv. 74 (1999) 27
,[14] A polynomial invariant of oriented links, Topology 26 (1987) 107
, ,[15] Power series expansions and invariants of links, from: "Geometric topology (Athens, GA, 1993)" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 184
,[16] Milnor numbers, spanning trees, and the Alexander–Conway polynomial, Adv. Math. 180 (2003) 765
, ,[17] On Vassiliev invariants of order two for string links, J. Knot Theory Ramifications 14 (2005) 665
,[18] On $C_n$–moves for links, Pacific J. Math. 238 (2008) 119
, ,[19] Link groups, Ann. of Math. 59 (1954) 177
,[20] Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S Lefschetz" (editors R H Fox, D C Spencer, A W Tucker), Princeton Univ. Press (1957) 280
,[21] On Milnor's invariant for links, Trans. Amer. Math. Soc. 124 (1966) 94
,[22] On Milnor's triple linking number, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 77
,[23] Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269
,[24] Milnor's invariants and the completions of link modules, Trans. Amer. Math. Soc. 284 (1984) 401
,[25] Conway's potential function and its Taylor series, Kobe J. Math. 5 (1988) 233
,[26] Classification of string links up to self delta-moves and concordance, Algebr. Geom. Topol. 9 (2009) 265
,[27] Self delta-equivalence for links whose Milnor's isotopy invariants vanish, Trans. Amer. Math. Soc. 361 (2009) 4721
,Cité par Sources :