Geometry and rigidity of mapping class groups
Geometry & topology, Tome 16 (2012) no. 2, pp. 781-888.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the large scale geometry of mapping class groups CG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of CG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for CG(S), namely that groups quasi-isometric to CG(S) are equivalent to it up to extraction of finite-index subgroups and quotients with finite kernel. (The latter theorem was proved by Hamenstädt using different methods).

As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of CG(S); a characterization of the image of the curve complex projections map from CG(S) to Y SC(Y ); and a construction of Σ–hulls in CG(S), an analogue of convex hulls.

DOI : 10.2140/gt.2012.16.781
Classification : 20F34, 20F36, 20F65, 20F69, 57M50, 30F60
Keywords: mapping class group, quasi-isometric rigidity, qi rigidity, curve complex, complex of curves, MCG, asymptotic cone

Behrstock, Jason 1 ; Kleiner, Bruce 2 ; Minsky, Yair 3 ; Mosher, Lee 4

1 The Graduate Center and Lehman College, CUNY, New York NY 10016, USA
2 Department of Mathematics, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York NY 10012-1185, USA
3 Department of Mathematics, Yale University, 10 Hillhouse Ave, New Haven CT 06520-8283, USA
4 Department of Mathematics and Computer Science, Rutgers University Newark, Newark NJ 07102, USA
@article{GT_2012_16_2_a4,
     author = {Behrstock, Jason and Kleiner, Bruce and Minsky, Yair and Mosher, Lee},
     title = {Geometry and rigidity of mapping class groups},
     journal = {Geometry & topology},
     pages = {781--888},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.781},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/}
}
TY  - JOUR
AU  - Behrstock, Jason
AU  - Kleiner, Bruce
AU  - Minsky, Yair
AU  - Mosher, Lee
TI  - Geometry and rigidity of mapping class groups
JO  - Geometry & topology
PY  - 2012
SP  - 781
EP  - 888
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/
DO  - 10.2140/gt.2012.16.781
ID  - GT_2012_16_2_a4
ER  - 
%0 Journal Article
%A Behrstock, Jason
%A Kleiner, Bruce
%A Minsky, Yair
%A Mosher, Lee
%T Geometry and rigidity of mapping class groups
%J Geometry & topology
%D 2012
%P 781-888
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/
%R 10.2140/gt.2012.16.781
%F GT_2012_16_2_a4
Behrstock, Jason; Kleiner, Bruce; Minsky, Yair; Mosher, Lee. Geometry and rigidity of mapping class groups. Geometry & topology, Tome 16 (2012) no. 2, pp. 781-888. doi : 10.2140/gt.2012.16.781. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/

[1] J E Andersen, Mapping class groups do not have Kazhdan's property (T)

[2] J Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, PhD thesis, SUNY at Stony Brook (2004)

[3] J Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523

[4] J Behrstock, C Druţu, L Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009) 543

[5] J Behrstock, C Druţu, M Sapir, Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. 102 (2011) 503

[6] J Behrstock, C Druţu, M Sapir, Addendum: Median structures on asymptotic cones and homomorphisms into mapping class groups \rm\citeBehrstockDrutuSapir:MCGsubgroups, Proc. Lond. Math. Soc. 102 (2011) 555

[7] J Behrstock, Y N Minsky, Centroids and the rapid decay property in mapping class groups, to appear in Jour. London Math. Soc.

[8] J Behrstock, Y N Minsky, Dimension and rank for mapping class groups, Ann. of Math. 167 (2008) 1055

[9] M Bourdon, H Pajot, Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000) 701

[10] J W Cannon, D Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992) 419

[11] A Casson, D Jungreis, Convergence groups and Seifert fibered $3$–manifolds, Invent. Math. 118 (1994) 441

[12] C Druţu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959

[13] T Dymarz, Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650

[14] A Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321

[15] A Eskin, B Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653

[16] A Eskin, D Fisher, K Whyte, Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007) 927

[17] B Farb, A Lubotzky, Y Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001) 581

[18] B Farb, H Masur, Superrigidity and mapping class groups, Topology 37 (1998) 1169

[19] B Farb, L Mosher, A rigidity theorem for the solvable Baumslag–Solitar groups, Invent. Math. 131 (1998) 419

[20] B Farb, L Mosher, Quasi-isometric rigidity for the solvable Baumslag–Solitar groups, II, Invent. Math. 137 (1999) 613

[21] B Farb, R Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996) 435

[22] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447

[23] M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53

[24] M Gromov, Infinite groups as geometric objects, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983)", PWN (1984) 385

[25] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[26] M Gromov, P Pansu, Rigidity of lattices: an introduction, from: "Geometric topology: recent developments (Montecatini Terme, 1990)" (editors P De Bartolomeis, F Tricerri), Lecture Notes in Math. 1504, Springer (1991) 39

[27] U Hamenstädt, Geometry of the mapping class groups III: Quasi-isometric rigidity

[28] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215

[29] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[30] A Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83, no. 422, Amer. Math. Soc. (1990)

[31] N V Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984) 786

[32] N V Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49

[33] N V Ivanov, Teichmüller modular groups and arithmetic groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. $($LOMI$)$ 167 (1988) 95, 190

[34] N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices (1997) 651

[35] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001)

[36] B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997) 115

[37] M Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95 (1999) 85

[38] F Luo, Automorphisms of the complex of curves, Topology 39 (2000) 283

[39] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[40] H A Masur, Y N Minsky, Geometry of the complex of curves II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[41] J Mccarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583

[42] J Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968) 447

[43] J Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1

[44] L Mosher, Mapping class groups are automatic, Ann. of Math. 142 (1995) 303

[45] L Mosher, Homology and dynamics in quasi-isometric rigidity of once-punctured mapping class groups, from: "Geometric and cohomological methods in group theory" (editors M R Bridson, P H Kropholler, I J Leary), London Math. Soc. Lecture Note Ser. 358, Cambridge Univ. Press (2009) 225

[46] L Mosher, M Sageev, K Whyte, Quasi-actions on trees I. Bounded valence, Ann. of Math. 158 (2003) 115

[47] L Mosher, M Sageev, K Whyte, Quasi-actions on trees II: Finite depth Bass–Serre trees, Mem. Amer. Math. Soc. 214, no. 1008, Amer. Math. Soc. (2011)

[48] G D Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press (1973)

[49] P Pansu, Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1

[50] P Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005) 759

[51] I Peng, Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011) 1883

[52] R E Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. (1995) 133

[53] J R Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968) 312

[54] D Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 465

[55] A S Švarc, A volume invariant of coverings, Dokl. Akad. Nauk SSSR 105 (1955) 32

[56] P Tukia, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta Math. 154 (1985) 153

[57] L Van Den Dries, A J Wilkie, Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984) 349

[58] K Whyte, The large scale geometry of the higher Baumslag–Solitar groups, Geom. Funct. Anal. 11 (2001) 1327

[59] X Xie, Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006) 101

Cité par Sources :