Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the large scale geometry of mapping class groups , using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for , namely that groups quasi-isometric to are equivalent to it up to extraction of finite-index subgroups and quotients with finite kernel. (The latter theorem was proved by Hamenstädt using different methods).
As part of our approach we obtain several other structural results: a description of the tree-graded structure on the asymptotic cone of ; a characterization of the image of the curve complex projections map from to ; and a construction of –hulls in , an analogue of convex hulls.
Behrstock, Jason 1 ; Kleiner, Bruce 2 ; Minsky, Yair 3 ; Mosher, Lee 4
@article{GT_2012_16_2_a4, author = {Behrstock, Jason and Kleiner, Bruce and Minsky, Yair and Mosher, Lee}, title = {Geometry and rigidity of mapping class groups}, journal = {Geometry & topology}, pages = {781--888}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, doi = {10.2140/gt.2012.16.781}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/} }
TY - JOUR AU - Behrstock, Jason AU - Kleiner, Bruce AU - Minsky, Yair AU - Mosher, Lee TI - Geometry and rigidity of mapping class groups JO - Geometry & topology PY - 2012 SP - 781 EP - 888 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/ DO - 10.2140/gt.2012.16.781 ID - GT_2012_16_2_a4 ER -
%0 Journal Article %A Behrstock, Jason %A Kleiner, Bruce %A Minsky, Yair %A Mosher, Lee %T Geometry and rigidity of mapping class groups %J Geometry & topology %D 2012 %P 781-888 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/ %R 10.2140/gt.2012.16.781 %F GT_2012_16_2_a4
Behrstock, Jason; Kleiner, Bruce; Minsky, Yair; Mosher, Lee. Geometry and rigidity of mapping class groups. Geometry & topology, Tome 16 (2012) no. 2, pp. 781-888. doi : 10.2140/gt.2012.16.781. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.781/
[1] Mapping class groups do not have Kazhdan's property (T)
,[2] Asymptotic geometry of the mapping class group and Teichmüller space, PhD thesis, SUNY at Stony Brook (2004)
,[3] Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523
,[4] Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009) 543
, , ,[5] Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. 102 (2011) 503
, , ,[6] Addendum: Median structures on asymptotic cones and homomorphisms into mapping class groups \rm\citeBehrstockDrutuSapir:MCGsubgroups, Proc. Lond. Math. Soc. 102 (2011) 555
, , ,[7] Centroids and the rapid decay property in mapping class groups, to appear in Jour. London Math. Soc.
, ,[8] Dimension and rank for mapping class groups, Ann. of Math. 167 (2008) 1055
, ,[9] Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv. 75 (2000) 701
, ,[10] A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992) 419
, ,[11] Convergence groups and Seifert fibered $3$–manifolds, Invent. Math. 118 (1994) 441
, ,[12] Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959
, ,[13] Large scale geometry of certain solvable groups, Geom. Funct. Anal. 19 (2010) 1650
,[14] Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998) 321
,[15] Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997) 653
, ,[16] Quasi-isometries and rigidity of solvable groups, Pure Appl. Math. Q. 3 (2007) 927
, , ,[17] Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001) 581
, , ,[18] Superrigidity and mapping class groups, Topology 37 (1998) 1169
, ,[19] A rigidity theorem for the solvable Baumslag–Solitar groups, Invent. Math. 131 (1998) 419
, ,[20] Quasi-isometric rigidity for the solvable Baumslag–Solitar groups, II, Invent. Math. 137 (1999) 613
, ,[21] The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996) 435
, ,[22] Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447
,[23] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) 53
,[24] Infinite groups as geometric objects, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983)", PWN (1984) 385
,[25] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[26] Rigidity of lattices: an introduction, from: "Geometric topology: recent developments (Montecatini Terme, 1990)" (editors P De Bartolomeis, F Tricerri), Lecture Notes in Math. 1504, Springer (1991) 39
, ,[27] Geometry of the mapping class groups III: Quasi-isometric rigidity
,[28] Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215
,[29] Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245
,[30] The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 83, no. 422, Amer. Math. Soc. (1990)
,[31] Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984) 786
,[32] Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49
,[33] Teichmüller modular groups and arithmetic groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. $($LOMI$)$ 167 (1988) 95, 190
,[34] Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices (1997) 651
,[35] Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001)
,[36] Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997) 115
, ,[37] Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology Appl. 95 (1999) 85
,[38] Automorphisms of the complex of curves, Topology 39 (2000) 283
,[39] Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[40] Geometry of the complex of curves II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902
, ,[41] A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583
,[42] Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968) 447
,[43] A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1
,[44] Mapping class groups are automatic, Ann. of Math. 142 (1995) 303
,[45] Homology and dynamics in quasi-isometric rigidity of once-punctured mapping class groups, from: "Geometric and cohomological methods in group theory" (editors M R Bridson, P H Kropholler, I J Leary), London Math. Soc. Lecture Note Ser. 358, Cambridge Univ. Press (2009) 225
,[46] Quasi-actions on trees I. Bounded valence, Ann. of Math. 158 (2003) 115
, , ,[47] Quasi-actions on trees II: Finite depth Bass–Serre trees, Mem. Amer. Math. Soc. 214, no. 1008, Amer. Math. Soc. (2011)
, , ,[48] Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press (1973)
,[49] Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989) 1
,[50] Quasi-isometry invariance of group splittings, Ann. of Math. 161 (2005) 759
,[51] Coarse differentiation and quasi-isometries of a class of solvable Lie groups I, Geom. Topol. 15 (2011) 1883
,[52] The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. (1995) 133
,[53] On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968) 312
,[54] On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 465
,[55] A volume invariant of coverings, Dokl. Akad. Nauk SSSR 105 (1955) 32
,[56] Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta Math. 154 (1985) 153
,[57] Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984) 349
, ,[58] The large scale geometry of the higher Baumslag–Solitar groups, Geom. Funct. Anal. 11 (2001) 1327
,[59] Quasi-isometric rigidity of Fuchsian buildings, Topology 45 (2006) 101
,Cité par Sources :