On the Taylor tower of relative K–theory
Geometry & topology, Tome 16 (2012) no. 2, pp. 685-750.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For R a discrete ring, M a simplicial R–bimodule, and X a simplicial set, we construct the Goodwillie Taylor tower of the reduced K–theory of parametrized endomorphisms K̃(R;M̃[X]) as a functor of X. Resolving general R–bimodules by bimodules of the form M̃[X], this also determines the Goodwillie Taylor tower of K̃(R;M) as a functor of M. The towers converge when X or M is connected. This also gives the Goodwillie Taylor tower of K̃(R M) K̃(R;B.M) as a functor of M.

For a functor with smash product F and an F–bimodule P, we construct an invariant W(F;P) which is an analog of TR(F) with coefficients. We study the structure of this invariant and its finite-stage approximations Wn(F;P) and conclude that the functor sending XWn(R;M̃[X]) is the n–th stage of the Goodwillie calculus Taylor tower of the functor which sends XK̃(R;M̃[X]). Thus the functor XW(R;M̃[X]) is the full Taylor tower, which converges to K̃(R;M̃[X]) for connected X.

DOI : 10.2140/gt.2012.16.685
Keywords: algebraic $K$–theory, $K$–theory of endomorphisms, Goodwillie calculus of functors

Lindenstrauss, Ayelet 1 ; McCarthy, Randy 2

1 Department of Mathematics, Indiana University, 831 E Third St, Bloomington IN 47405, USA
2 Department of Mathematics, University of Illinois, Urbana, 1409 W Green Street, Urbana IL 61801, USA
@article{GT_2012_16_2_a2,
     author = {Lindenstrauss, Ayelet and McCarthy, Randy},
     title = {On the {Taylor} tower of relative {K{\textendash}theory}},
     journal = {Geometry & topology},
     pages = {685--750},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.685},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.685/}
}
TY  - JOUR
AU  - Lindenstrauss, Ayelet
AU  - McCarthy, Randy
TI  - On the Taylor tower of relative K–theory
JO  - Geometry & topology
PY  - 2012
SP  - 685
EP  - 750
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.685/
DO  - 10.2140/gt.2012.16.685
ID  - GT_2012_16_2_a2
ER  - 
%0 Journal Article
%A Lindenstrauss, Ayelet
%A McCarthy, Randy
%T On the Taylor tower of relative K–theory
%J Geometry & topology
%D 2012
%P 685-750
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.685/
%R 10.2140/gt.2012.16.685
%F GT_2012_16_2_a2
Lindenstrauss, Ayelet; McCarthy, Randy. On the Taylor tower of relative K–theory. Geometry & topology, Tome 16 (2012) no. 2, pp. 685-750. doi : 10.2140/gt.2012.16.685. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.685/

[1] G Almkvist, The Grothendieck ring of the category of endomorphisms, J. Algebra 28 (1974) 375

[2] M Bökstedt, Topological Hochschild homology, preprint (1985)

[3] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)

[5] B I Dundas, R Mccarthy, Stable $K$–theory and topological Hochschild homology, Ann. of Math. 140 (1994) 685

[6] B I Dundas, R Mccarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996) 231

[7] T G Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1

[8] T G Goodwillie, Notes on the cyclotomic trace, MSRI lecture notes (1990)

[9] T G Goodwillie, Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295

[10] T G Goodwillie, Calculus III: Taylor series, Geom. Topol. 7 (2003) 645

[11] L Hesselholt, The big de Rahm–Witt complex

[12] L Hesselholt, Witt vectors of non-commutative rings and topological cyclic homology, Acta Math. 178 (1997) 109

[13] L Hesselholt, I Madsen, On the $K$–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29

[14] L Hesselholt, I Madsen, On the De Rham–Witt complex in mixed characteristic, Ann. Sci. École Norm. Sup. 37 (2004) 1

[15] A Lindenstrauss, A relative spectral sequence for topological Hochschild homology of spectra, J. Pure Appl. Algebra 148 (2000) 77

[16] A Lindenstrauss, R Mccarthy, On the algebraic $K$–theory of formal power series, to appear in $K$–Theory

[17] A Lindenstrauss, R Mccarthy, The algebraic $K$–theory of extensions of a ring by direct sums of itself, Indiana Univ. Math. J. 57 (2008) 577

[18] I Madsen, Algebraic $K$–theory and traces, from: "Current developments in mathematics, 1995 (Cambridge, MA)" (editors R Bott, M Hopkins, A Jaffe, I Singer, D Stroock, S T Yau), Int. Press (1994) 191

[19] R Mccarthy, Relative algebraic $K$–theory and topological cyclic homology, Acta Math. 179 (1997) 197

[20] T Pirashvili, F Waldhausen, Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992) 81

[21] F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, NJ, 1983)" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 318

Cité par Sources :