Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Consider a one-ended word-hyperbolic group. If it is the fundamental group of a graph of free groups with cyclic edge groups then either it is the fundamental group of a surface or it contains a finitely generated one-ended subgroup of infinite index. As a corollary, the same holds for limit groups. We also obtain a characterisation of surfaces with boundary among free groups equipped with peripheral structures.
Wilton, Henry 1
@article{GT_2012_16_2_a1, author = {Wilton, Henry}, title = {One-ended subgroups of graphs of free groups with cyclic edge groups}, journal = {Geometry & topology}, pages = {665--683}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2012}, doi = {10.2140/gt.2012.16.665}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/} }
TY - JOUR AU - Wilton, Henry TI - One-ended subgroups of graphs of free groups with cyclic edge groups JO - Geometry & topology PY - 2012 SP - 665 EP - 683 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/ DO - 10.2140/gt.2012.16.665 ID - GT_2012_16_2_a1 ER -
Wilton, Henry. One-ended subgroups of graphs of free groups with cyclic edge groups. Geometry & topology, Tome 16 (2012) no. 2, pp. 665-683. doi : 10.2140/gt.2012.16.665. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/
[1] A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459
,[2] Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993) 3
,[3] Heegaard documentation (2010)
,[4] Questions in geometric group theory, preprint (2004)
,[5] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[6] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145
,[7] Problems concerning hyperbolic and $\mathrm{CAT}(0)$ groups, preprint (2007)
,[8] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[9] Surface subgroups from homology, Geom. Topol. 12 (2008) 1995
,[10] Splitting line patterns in free groups
,[11] Line patterns in free groups, Geom. Topol. 15 (2011) 1419
, ,[12] Combination of convergence groups, Geom. Topol. 7 (2003) 933
,[13] The Grushko decomposition of a finite graph of finite rank free groups: an algorithm, Geom. Topol. 9 (2005) 1835
, ,[14] On surface subgroups of doubles of free groups, J. Lond. Math. Soc. 82 (2010) 17
, ,[15] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[16] JSJ decompositions: definitions, existence, uniqueness. I: The JSJ deformation space
, ,[17] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551
, ,[18] Subgroups of finite index in free groups, Canadian J. Math. 1 (1949) 187
,[19] Cubulating graphs of free groups with cyclic edge groups, Amer. J. Math. 132 (2010) 1153
, ,[20] Immersing almost geodesic surfaces in a closed hyperbolic three manifold, to appear in Ann. of Math.
, ,[21] Irreducible affine varieties over a free group: I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472
, ,[22] On right-angled Artin groups without surface subgroups, Groups Geom. Dyn. 4 (2010) 275
,[23] Polygonal words in free groups, to appear in Q. J. Math.
, ,[24] Scott complexity and adjoining roots to finitely generated groups, to appear in Groups Geom. Dyn.
,[25] Combinatorial group theory, Ergeb. Math. Grenz. 89, Springer (1977)
, ,[26] Virtually geometric words and Whitehead's algorithm, Math. Res. Lett. 17 (2010) 917
,[27] Finitely generated $3$–manifold groups are finitely presented, J. London Math. Soc. 6 (1973) 437
,[28] Topological methods in group theory, from: "Homological group theory (Proc. Sympos., Durham, 1977)" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137
, ,[29] Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31
,[30] Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955) 273
,[31] Elementarily free groups are subgroup separable, Proc. Lond. Math. Soc. 95 (2007) 473
,[32] Hall's theorem for limit groups, Geom. Funct. Anal. 18 (2008) 271
,[33] Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math. 51 (2000) 107
,Cité par Sources :