One-ended subgroups of graphs of free groups with cyclic edge groups
Geometry & topology, Tome 16 (2012) no. 2, pp. 665-683.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Consider a one-ended word-hyperbolic group. If it is the fundamental group of a graph of free groups with cyclic edge groups then either it is the fundamental group of a surface or it contains a finitely generated one-ended subgroup of infinite index. As a corollary, the same holds for limit groups. We also obtain a characterisation of surfaces with boundary among free groups equipped with peripheral structures.

DOI : 10.2140/gt.2012.16.665
Classification : 20F65, 20F67, 57M07
Keywords: free group, hyperbolic group, surface subgroup

Wilton, Henry 1

1 Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK
@article{GT_2012_16_2_a1,
     author = {Wilton, Henry},
     title = {One-ended subgroups of graphs of free groups with cyclic edge groups},
     journal = {Geometry & topology},
     pages = {665--683},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2012},
     doi = {10.2140/gt.2012.16.665},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/}
}
TY  - JOUR
AU  - Wilton, Henry
TI  - One-ended subgroups of graphs of free groups with cyclic edge groups
JO  - Geometry & topology
PY  - 2012
SP  - 665
EP  - 683
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/
DO  - 10.2140/gt.2012.16.665
ID  - GT_2012_16_2_a1
ER  - 
%0 Journal Article
%A Wilton, Henry
%T One-ended subgroups of graphs of free groups with cyclic edge groups
%J Geometry & topology
%D 2012
%P 665-683
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/
%R 10.2140/gt.2012.16.665
%F GT_2012_16_2_a1
Wilton, Henry. One-ended subgroups of graphs of free groups with cyclic edge groups. Geometry & topology, Tome 16 (2012) no. 2, pp. 665-683. doi : 10.2140/gt.2012.16.665. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.665/

[1] E Alibegović, A combination theorem for relatively hyperbolic groups, Bull. London Math. Soc. 37 (2005) 459

[2] H Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993) 3

[3] J Berge, Heegaard documentation (2010)

[4] M Bestvina, Questions in geometric group theory, preprint (2004)

[5] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[6] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145

[7] M R Bridson, Problems concerning hyperbolic and $\mathrm{CAT}(0)$ groups, preprint (2007)

[8] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[9] D Calegari, Surface subgroups from homology, Geom. Topol. 12 (2008) 1995

[10] C H Cashen, Splitting line patterns in free groups

[11] C H Cashen, N Macura, Line patterns in free groups, Geom. Topol. 15 (2011) 1419

[12] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933

[13] G A Diao, M Feighn, The Grushko decomposition of a finite graph of finite rank free groups: an algorithm, Geom. Topol. 9 (2005) 1835

[14] C Gordon, H Wilton, On surface subgroups of doubles of free groups, J. Lond. Math. Soc. 82 (2010) 17

[15] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[16] V Guirardel, G Levitt, JSJ decompositions: definitions, existence, uniqueness. I: The JSJ deformation space

[17] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551

[18] M Hall Jr., Subgroups of finite index in free groups, Canadian J. Math. 1 (1949) 187

[19] T Hsu, D T Wise, Cubulating graphs of free groups with cyclic edge groups, Amer. J. Math. 132 (2010) 1153

[20] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, to appear in Ann. of Math.

[21] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group: I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472

[22] S H Kim, On right-angled Artin groups without surface subgroups, Groups Geom. Dyn. 4 (2010) 275

[23] S H Kim, H Wilton, Polygonal words in free groups, to appear in Q. J. Math.

[24] L Louder, Scott complexity and adjoining roots to finitely generated groups, to appear in Groups Geom. Dyn.

[25] R C Lyndon, P E Schupp, Combinatorial group theory, Ergeb. Math. Grenz. 89, Springer (1977)

[26] J F Manning, Virtually geometric words and Whitehead's algorithm, Math. Res. Lett. 17 (2010) 917

[27] P Scott, Finitely generated $3$–manifold groups are finitely presented, J. London Math. Soc. 6 (1973) 437

[28] P Scott, T Wall, Topological methods in group theory, from: "Homological group theory (Proc. Sympos., Durham, 1977)" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137

[29] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[30] A Shenitzer, Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955) 273

[31] H Wilton, Elementarily free groups are subgroup separable, Proc. Lond. Math. Soc. 95 (2007) 473

[32] H Wilton, Hall's theorem for limit groups, Geom. Funct. Anal. 18 (2008) 271

[33] D T Wise, Subgroup separability of graphs of free groups with cyclic edge groups, Q. J. Math. 51 (2000) 107

Cité par Sources :