Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed hyperbolic three-manifold. We show that the number of genus surface subgroups of grows like .
Kahn, Jeremy 1 ; Marković, Vladimir 2
@article{GT_2012_16_1_a11, author = {Kahn, Jeremy and Markovi\'c, Vladimir}, title = {Counting essential surfaces in a closed hyperbolic three-manifold}, journal = {Geometry & topology}, pages = {601--624}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.601}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/} }
TY - JOUR AU - Kahn, Jeremy AU - Marković, Vladimir TI - Counting essential surfaces in a closed hyperbolic three-manifold JO - Geometry & topology PY - 2012 SP - 601 EP - 624 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/ DO - 10.2140/gt.2012.16.601 ID - GT_2012_16_1_a11 ER -
Kahn, Jeremy; Marković, Vladimir. Counting essential surfaces in a closed hyperbolic three-manifold. Geometry & topology, Tome 16 (2012) no. 1, pp. 601-624. doi : 10.2140/gt.2012.16.601. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/
[1] The asymptotic number of rooted maps on a surface, J. Combin. Theory Ser. A 43 (1986) 244
, ,[2] Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986) 23
, ,[3] Immersing almost geodesic surfaces in a closed hyperbolic three manifold
, ,[4] Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994) 173
,[5] Counting immersed surfaces in hyperbolic $3$–manifolds, Algebr. Geom. Topol. 5 (2005) 835
,[6] Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. 66 (2002) 623
, ,[7] An extension of Wolpert's derivative formula, Pacific J. Math. 197 (2001) 223
,[8] Complex Fenchel–Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5 (1994) 239
,Cité par Sources :