Counting essential surfaces in a closed hyperbolic three-manifold
Geometry & topology, Tome 16 (2012) no. 1, pp. 601-624.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M3 be a closed hyperbolic three-manifold. We show that the number of genus g surface subgroups of π1(M3) grows like g2g.

DOI : 10.2140/gt.2012.16.601
Classification : 57M50, 20H10
Keywords: hyperbolic $3$–manifold, essential surface

Kahn, Jeremy 1 ; Marković, Vladimir 2

1 Department of Mathematics, Brown University, Providence RI 02912, USA
2 Department of Mathematics, California Institute of Technology, Pasadena CA 91105, USA
@article{GT_2012_16_1_a11,
     author = {Kahn, Jeremy and Markovi\'c, Vladimir},
     title = {Counting essential surfaces in a closed hyperbolic three-manifold},
     journal = {Geometry & topology},
     pages = {601--624},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.601},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/}
}
TY  - JOUR
AU  - Kahn, Jeremy
AU  - Marković, Vladimir
TI  - Counting essential surfaces in a closed hyperbolic three-manifold
JO  - Geometry & topology
PY  - 2012
SP  - 601
EP  - 624
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/
DO  - 10.2140/gt.2012.16.601
ID  - GT_2012_16_1_a11
ER  - 
%0 Journal Article
%A Kahn, Jeremy
%A Marković, Vladimir
%T Counting essential surfaces in a closed hyperbolic three-manifold
%J Geometry & topology
%D 2012
%P 601-624
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/
%R 10.2140/gt.2012.16.601
%F GT_2012_16_1_a11
Kahn, Jeremy; Marković, Vladimir. Counting essential surfaces in a closed hyperbolic three-manifold. Geometry & topology, Tome 16 (2012) no. 1, pp. 601-624. doi : 10.2140/gt.2012.16.601. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.601/

[1] E A Bender, E R Canfield, The asymptotic number of rooted maps on a surface, J. Combin. Theory Ser. A 43 (1986) 244

[2] A Douady, C J Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986) 23

[3] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold

[4] C Kourouniotis, Complex length coordinates for quasi-Fuchsian groups, Mathematika 41 (1994) 173

[5] J D Masters, Counting immersed surfaces in hyperbolic $3$–manifolds, Algebr. Geom. Topol. 5 (2005) 835

[6] T W Müller, J C Puchta, Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. 66 (2002) 623

[7] C Series, An extension of Wolpert's derivative formula, Pacific J. Math. 197 (2001) 223

[8] S P Tan, Complex Fenchel–Nielsen coordinates for quasi-Fuchsian structures, Internat. J. Math. 5 (1994) 239

Cité par Sources :