Tree homology and a conjecture of Levine
Geometry & topology, Tome 16 (2012) no. 1, pp. 555-600.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In his study of the group of homology cylinders, J Levine [Algebr. Geom. Topol. 2 (2002) 1197–1204] made the conjecture that a certain group homomorphism η: T D is an isomorphism. Both T and D are defined combinatorially using trivalent trees and have strong connections to a variety of topological settings, including the mapping class group, homology cylinders, finite type invariants, Whitney tower intersection theory and the homology of Out(Fn). In this paper, we confirm Levine’s conjecture by applying discrete Morse theory to certain subcomplexes of a Kontsevich-type graph complex. These are chain complexes generated by trees, and we identify particular homology groups of them with the domain T and range D of Levine’s map.

The isomorphism η is a key to classifying the structure of links up to grope and Whitney tower concordance, as explained in [Proc. Natl. Acad. Sci. USA 108 (2011) 8131–8138; arXiv 1202.3463]. In this paper and [arXiv 1202.2482] we apply our result to confirm and improve upon Levine’s conjectured relation between two filtrations of the group of homology cylinders.

DOI : 10.2140/gt.2012.16.555
Classification : 57M27, 57M25, 57N10
Keywords: Levine conjecture, tree homology, homology cylinder, Whitney tower, discrete Morse theory, quasi-Lie algebra

Conant, James 1 ; Schneiderman, Rob 2 ; Teichner, Peter 3

1 Department of Mathematics, University of Tennessee, Knoxville TN 37996, USA
2 Department of Mathematics and Computer Science, Lehman College, CUNY, 250 Bedford Park Boulevard West, Bronx NY 10468-1589, USA
3 Department of Mathematics, University of California, Berkeley and MPIM Bonn, Berkeley CA 94720-3840, USA
@article{GT_2012_16_1_a10,
     author = {Conant, James and Schneiderman, Rob and Teichner, Peter},
     title = {Tree homology and a conjecture of {Levine}},
     journal = {Geometry & topology},
     pages = {555--600},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.555},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/}
}
TY  - JOUR
AU  - Conant, James
AU  - Schneiderman, Rob
AU  - Teichner, Peter
TI  - Tree homology and a conjecture of Levine
JO  - Geometry & topology
PY  - 2012
SP  - 555
EP  - 600
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/
DO  - 10.2140/gt.2012.16.555
ID  - GT_2012_16_1_a10
ER  - 
%0 Journal Article
%A Conant, James
%A Schneiderman, Rob
%A Teichner, Peter
%T Tree homology and a conjecture of Levine
%J Geometry & topology
%D 2012
%P 555-600
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/
%R 10.2140/gt.2012.16.555
%F GT_2012_16_1_a10
Conant, James; Schneiderman, Rob; Teichner, Peter. Tree homology and a conjecture of Levine. Geometry & topology, Tome 16 (2012) no. 1, pp. 555-600. doi : 10.2140/gt.2012.16.555. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/

[1] D Cheptea, K Habiro, G Massuyeau, A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol. 12 (2008) 1091

[2] T D Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84, no. 427, Amer. Math. Soc. (1990)

[3] J Conant, R Schneiderman, P Teichner, Geometric filtrations of string links and homology cylinders

[4] J Conant, R Schneiderman, P Teichner, Milnor invariants and twisted Whitney towers

[5] J Conant, R Schneiderman, P Teichner, Whitney tower concordance of classical links

[6] J Conant, R Schneiderman, P Teichner, Higher-order intersections in low-dimensional topology, Proc. Natl. Acad. Sci. USA 108 (2011) 8131

[7] J Conant, K Vogtmann, On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003) 1167

[8] J Conant, K Vogtmann, Morita classes in the homology of automorphism groups of free groups, Geom. Topol. 8 (2004) 1471

[9] R Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90

[10] S Garoufalidis, M Goussarov, M Polyak, Calculus of clovers and finite type invariants of $3$–manifolds, Geom. Topol. 5 (2001) 75

[11] S Garoufalidis, J Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, from: "Graphs and patterns in mathematics and theoretical physics" (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 173

[12] M Goussarov, Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517

[13] N Habegger, Milnor, Johnson and tree-level perturbative invariants, preprint (2000)

[14] N Habegger, G Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253

[15] N Habegger, W Pitsch, Tree level Lie algebra structures of perturbative invariants, J. Knot Theory Ramifications 12 (2003) 333

[16] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1

[17] K Habiro, G Massuyeau, Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topol. 2 (2009) 527

[18] K Habiro, G Massuyeau, From mapping class groups to monoids of homology cobordisms: a survey, preprint (2010)

[19] D Johnson, A survey of the Torelli group, from: "Low-dimensional topology (San Francisco, Calif., 1981)" (editor S J Lomonaco Jr.), Contemp. Math. 20, Amer. Math. Soc. (1983) 165

[20] M Kontsevich, Formal (non)commutative symplectic geometry, from: "The Gel'fand Mathematical Seminars, 1990–1992" (editors L Corwin, I Gel’fand, J Lepowsky), Birkhäuser (1993) 173

[21] D N Kozlov, Discrete Morse theory for free chain complexes, C. R. Math. Acad. Sci. Paris 340 (2005) 867

[22] J Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001) 243

[23] J Levine, Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” \rm\citeL1, Algebr. Geom. Topol. 2 (2002) 1197

[24] J Levine, Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol. 6 (2006) 935

[25] W Magnus, A Karrass, D Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Dover (1976)

[26] J Milnor, Link groups, Ann. of Math. 59 (1954) 177

[27] J Milnor, Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S Lefschetz" (editors R H Fox, D C D. C. Spencer, A W Tucker), Princeton Univ. Press (1957) 280

[28] S Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993) 699

[29] S Morita, Structure of the mapping class groups of surfaces: a survey and a prospect, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 349

[30] K E Orr, Homotopy invariants of links, Invent. Math. 95 (1989) 379

[31] M A Readdy, The pre-WDVV ring of physics and its topology, Ramanujan J. 10 (2005) 269

[32] C Reutenauer, Free Lie algebras, London Math. Soc. Monogr. (NS) 7, Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1993)

Cité par Sources :