Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In his study of the group of homology cylinders, J Levine [Algebr. Geom. Topol. 2 (2002) 1197–1204] made the conjecture that a certain group homomorphism is an isomorphism. Both and are defined combinatorially using trivalent trees and have strong connections to a variety of topological settings, including the mapping class group, homology cylinders, finite type invariants, Whitney tower intersection theory and the homology of . In this paper, we confirm Levine’s conjecture by applying discrete Morse theory to certain subcomplexes of a Kontsevich-type graph complex. These are chain complexes generated by trees, and we identify particular homology groups of them with the domain and range of Levine’s map.
The isomorphism is a key to classifying the structure of links up to grope and Whitney tower concordance, as explained in [Proc. Natl. Acad. Sci. USA 108 (2011) 8131–8138; arXiv 1202.3463]. In this paper and [arXiv 1202.2482] we apply our result to confirm and improve upon Levine’s conjectured relation between two filtrations of the group of homology cylinders.
Conant, James 1 ; Schneiderman, Rob 2 ; Teichner, Peter 3
@article{GT_2012_16_1_a10, author = {Conant, James and Schneiderman, Rob and Teichner, Peter}, title = {Tree homology and a conjecture of {Levine}}, journal = {Geometry & topology}, pages = {555--600}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.555}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/} }
TY - JOUR AU - Conant, James AU - Schneiderman, Rob AU - Teichner, Peter TI - Tree homology and a conjecture of Levine JO - Geometry & topology PY - 2012 SP - 555 EP - 600 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/ DO - 10.2140/gt.2012.16.555 ID - GT_2012_16_1_a10 ER -
Conant, James; Schneiderman, Rob; Teichner, Peter. Tree homology and a conjecture of Levine. Geometry & topology, Tome 16 (2012) no. 1, pp. 555-600. doi : 10.2140/gt.2012.16.555. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.555/
[1] A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol. 12 (2008) 1091
, , ,[2] Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84, no. 427, Amer. Math. Soc. (1990)
,[3] Geometric filtrations of string links and homology cylinders
, , ,[4] Milnor invariants and twisted Whitney towers
, , ,[5] Whitney tower concordance of classical links
, , ,[6] Higher-order intersections in low-dimensional topology, Proc. Natl. Acad. Sci. USA 108 (2011) 8131
, , ,[7] On a theorem of Kontsevich, Algebr. Geom. Topol. 3 (2003) 1167
, ,[8] Morita classes in the homology of automorphism groups of free groups, Geom. Topol. 8 (2004) 1471
, ,[9] Morse theory for cell complexes, Adv. Math. 134 (1998) 90
,[10] Calculus of clovers and finite type invariants of $3$–manifolds, Geom. Topol. 5 (2001) 75
, , ,[11] Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, from: "Graphs and patterns in mathematics and theoretical physics" (editors M Lyubich, L Takhtajan), Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 173
, ,[12] Finite type invariants and $n$–equivalence of $3$–manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 517
,[13] Milnor, Johnson and tree-level perturbative invariants, preprint (2000)
,[14] The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253
, ,[15] Tree level Lie algebra structures of perturbative invariants, J. Knot Theory Ramifications 12 (2003) 333
, ,[16] Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1
,[17] Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topol. 2 (2009) 527
, ,[18] From mapping class groups to monoids of homology cobordisms: a survey, preprint (2010)
, ,[19] A survey of the Torelli group, from: "Low-dimensional topology (San Francisco, Calif., 1981)" (editor S J Lomonaco Jr.), Contemp. Math. 20, Amer. Math. Soc. (1983) 165
,[20] Formal (non)commutative symplectic geometry, from: "The Gel'fand Mathematical Seminars, 1990–1992" (editors L Corwin, I Gel’fand, J Lepowsky), Birkhäuser (1993) 173
,[21] Discrete Morse theory for free chain complexes, C. R. Math. Acad. Sci. Paris 340 (2005) 867
,[22] Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001) 243
,[23] Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” \rm\citeL1, Algebr. Geom. Topol. 2 (2002) 1197
,[24] Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol. 6 (2006) 935
,[25] Combinatorial group theory: Presentations of groups in terms of generators and relations, Dover (1976)
, , ,[26] Link groups, Ann. of Math. 59 (1954) 177
,[27] Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S Lefschetz" (editors R H Fox, D C D. C. Spencer, A W Tucker), Princeton Univ. Press (1957) 280
,[28] Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993) 699
,[29] Structure of the mapping class groups of surfaces: a survey and a prospect, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 349
,[30] Homotopy invariants of links, Invent. Math. 95 (1989) 379
,[31] The pre-WDVV ring of physics and its topology, Ramanujan J. 10 (2005) 269
,[32] Free Lie algebras, London Math. Soc. Monogr. (NS) 7, Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1993)
,Cité par Sources :