Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that the asymptotic dimension of a finite-dimensional cube complex is bounded above by the dimension. To achieve this we prove a controlled colouring theorem for the complex. We also show that every cube complex is a contractive retraction of an infinite dimensional cube. As an example of the dimension theorem we obtain bounds on the asymptotic dimension of small cancellation groups.
Wright, Nick 1
@article{GT_2012_16_1_a9, author = {Wright, Nick}, title = {Finite asymptotic dimension for {CAT(0)} cube complexes}, journal = {Geometry & topology}, pages = {527--554}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.527}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/} }
Wright, Nick. Finite asymptotic dimension for CAT(0) cube complexes. Geometry & topology, Tome 16 (2012) no. 1, pp. 527-554. doi : 10.2140/gt.2012.16.527. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/
[1] A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006) 4749
, ,[2] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[3] Property A and $\mathrm{CAT}(0)$ cube complexes, J. Funct. Anal. 256 (2009) 1408
, , , , ,[4] Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60
, ,[5] From wall spaces to $\mathrm{CAT}(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005) 875
, ,[6] On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol. 8 (2008) 1281
,[7] Open problems in asymptotic dimension theory, preprint (2008)
,[8] On the dimension growth of groups
, ,[9] Finiteness and $\mathrm{CAT}(0)$ properties of diagram groups, Topology 42 (2003) 1065
,[10] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[11] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[12] The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621
, ,[13] Groups acting on cubes and Kazhdan's property (T), Proc. Amer. Math. Soc. 126 (1998) 693
, ,[14] Cubulating spaces with walls, Algebr. Geom. Topol. 4 (2004) 297
,[15] Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011) 4701
, ,[16] Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 2005 (2005) 2143
,[17] Lectures on coarse geometry, Univ. Lecture Series 31, Amer. Math. Soc. (2003)
,[18] Poc sets, median algebras and group actions. An extended study of Dunwoody's construction and Sageev's theorem, preprint (1998)
,[19] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585
,[20] Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150
,Cité par Sources :