Finite asymptotic dimension for CAT(0) cube complexes
Geometry & topology, Tome 16 (2012) no. 1, pp. 527-554.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the asymptotic dimension of a finite-dimensional CAT(0) cube complex is bounded above by the dimension. To achieve this we prove a controlled colouring theorem for the complex. We also show that every CAT(0) cube complex is a contractive retraction of an infinite dimensional cube. As an example of the dimension theorem we obtain bounds on the asymptotic dimension of small cancellation groups.

DOI : 10.2140/gt.2012.16.527
Keywords: asymptotic dimension, $\mathrm{CAT}(0)$ cube complex, small cancellation group

Wright, Nick 1

1 Mathematics, University of Southampton, University Road, Southampton, SO17 1BJ, UK
@article{GT_2012_16_1_a9,
     author = {Wright, Nick},
     title = {Finite asymptotic dimension for {CAT(0)} cube complexes},
     journal = {Geometry & topology},
     pages = {527--554},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.527},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/}
}
TY  - JOUR
AU  - Wright, Nick
TI  - Finite asymptotic dimension for CAT(0) cube complexes
JO  - Geometry & topology
PY  - 2012
SP  - 527
EP  - 554
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/
DO  - 10.2140/gt.2012.16.527
ID  - GT_2012_16_1_a9
ER  - 
%0 Journal Article
%A Wright, Nick
%T Finite asymptotic dimension for CAT(0) cube complexes
%J Geometry & topology
%D 2012
%P 527-554
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/
%R 10.2140/gt.2012.16.527
%F GT_2012_16_1_a9
Wright, Nick. Finite asymptotic dimension for CAT(0) cube complexes. Geometry & topology, Tome 16 (2012) no. 1, pp. 527-554. doi : 10.2140/gt.2012.16.527. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.527/

[1] G C Bell, A Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Amer. Math. Soc. 358 (2006) 4749

[2] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[3] J Brodzki, S J Campbell, E Guentner, G A Niblo, N J Wright, Property A and $\mathrm{CAT}(0)$ cube complexes, J. Funct. Anal. 256 (2009) 1408

[4] S V Buyalo, N D Lebedeva, Dimensions of locally and asymptotically self-similar spaces, Algebra i Analiz 19 (2007) 60

[5] I Chatterji, G Niblo, From wall spaces to $\mathrm{CAT}(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005) 875

[6] A Dranishnikov, On asymptotic dimension of amalgamated products and right-angled Coxeter groups, Algebr. Geom. Topol. 8 (2008) 1281

[7] A Dranishnikov, Open problems in asymptotic dimension theory, preprint (2008)

[8] A Dranishnikov, M V Sapir, On the dimension growth of groups

[9] D S Farley, Finiteness and $\mathrm{CAT}(0)$ properties of diagram groups, Topology 42 (2003) 1065

[10] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[11] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[12] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621

[13] G A Niblo, M A Roller, Groups acting on cubes and Kazhdan's property (T), Proc. Amer. Math. Soc. 126 (1998) 693

[14] B Nica, Cubulating spaces with walls, Algebr. Geom. Topol. 4 (2004) 297

[15] Y Ollivier, D T Wise, Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011) 4701

[16] D Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. 2005 (2005) 2143

[17] J Roe, Lectures on coarse geometry, Univ. Lecture Series 31, Amer. Math. Soc. (2003)

[18] M A Roller, Poc sets, median algebras and group actions. An extended study of Dunwoody's construction and Sageev's theorem, preprint (1998)

[19] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585

[20] D T Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004) 150

Cité par Sources :