Orbifold Gromov–Witten theory of the symmetric product of 𝒜r
Geometry & topology, Tome 16 (2012) no. 1, pp. 475-526.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Ar be the minimal resolution of the type Ar surface singularity. We study the equivariant orbifold Gromov–Witten theory of the n–fold symmetric product stack [Symn(Ar)] of Ar. We calculate the divisor operators, which turn out to determine the entire theory under a nondegeneracy hypothesis. This, together with the results of Maulik and Oblomkov, shows that the Crepant Resolution Conjecture for Symn(Ar) is valid. More strikingly, we complete a tetrahedron of equivalences relating the Gromov–Witten theories of [Symn(Ar)]∕Hilbn(Ar) and the relative Gromov–Witten/Donaldson–Thomas theories of Ar × ℙ1.

DOI : 10.2140/gt.2012.16.475
Classification : 14N35, 14H10
Keywords: orbifold Gromov–Witten invariant, symmetric product, $\mathcal{A}_r$ resolution, Crepant Resolution Conjecture

Cheong, Wan Keng 1 ; Gholampour, Amin 2

1 Department of Mathematics, National Cheng Kung University, Tainan City 701, Taiwan
2 Department of Mathematics, University of Maryland, College Park, MD 20742, USA
@article{GT_2012_16_1_a8,
     author = {Cheong, Wan Keng and Gholampour, Amin},
     title = {Orbifold {Gromov{\textendash}Witten} theory of the symmetric product of {\ensuremath{\mathscr{A}}r}},
     journal = {Geometry & topology},
     pages = {475--526},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/}
}
TY  - JOUR
AU  - Cheong, Wan Keng
AU  - Gholampour, Amin
TI  - Orbifold Gromov–Witten theory of the symmetric product of 𝒜r
JO  - Geometry & topology
PY  - 2012
SP  - 475
EP  - 526
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/
DO  - 10.2140/gt.2012.16.475
ID  - GT_2012_16_1_a8
ER  - 
%0 Journal Article
%A Cheong, Wan Keng
%A Gholampour, Amin
%T Orbifold Gromov–Witten theory of the symmetric product of 𝒜r
%J Geometry & topology
%D 2012
%P 475-526
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/
%R 10.2140/gt.2012.16.475
%F GT_2012_16_1_a8
Cheong, Wan Keng; Gholampour, Amin. Orbifold Gromov–Witten theory of the symmetric product of 𝒜r. Geometry & topology, Tome 16 (2012) no. 1, pp. 475-526. doi : 10.2140/gt.2012.16.475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/

[1] D Abramovich, A Corti, A Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003) 3547

[2] D Abramovich, T Graber, A Vistoli, Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1

[3] D Abramovich, T Graber, A Vistoli, Gromov-Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337

[4] J Bryan, T Graber, The crepant resolution conjecture, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, others), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23

[5] J Bryan, R Pandharipande, The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101

[6] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25

[7] W Chen, Y Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1

[8] W K Cheong, Strengthening the cohomological crepant resolution conjecture for Hilbert–Chow morphisms

[9] I P Goulden, D M Jackson, R Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43

[10] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[11] I Grojnowski, Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275

[12] W P Li, Z Qin, W Wang, The cohomology rings of Hilbert schemes via Jack polynomials, from: "Algebraic structures and moduli spaces" (editors J Hurtubise, E Markman), CRM Proc. Lecture Notes 38, Amer. Math. Soc. (2004) 249

[13] D Maulik, Gromov–Witten theory of $\mathcal A_n$–resolutions, Geom. Topol. 13 (2009) 1729

[14] D Maulik, A Oblomkov, Donaldson–Thomas theory of $\mathcal{A}_n\times P^1$, Compos. Math. 145 (2009) 1249

[15] D Maulik, A Oblomkov, Quantum cohomology of the Hilbert scheme of points on $\mathcal A_n$–resolutions, J. Amer. Math. Soc. 22 (2009) 1055

[16] H Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999)

[17] A Okounkov, R Pandharipande, The local Donaldson–Thomas theory of curves, Geom. Topol. 14 (2010) 1503

[18] A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523

Cité par Sources :