Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the minimal resolution of the type surface singularity. We study the equivariant orbifold GromovâWitten theory of the âfold symmetric product stack of . We calculate the divisor operators, which turn out to determine the entire theory under a nondegeneracy hypothesis. This, together with the results of Maulik and Oblomkov, shows that the Crepant Resolution Conjecture for is valid. More strikingly, we complete a tetrahedron of equivalences relating the GromovâWitten theories of and the relative GromovâWitten/DonaldsonâThomas theories of .
Cheong, Wan Keng 1 ; Gholampour, Amin 2
@article{GT_2012_16_1_a8, author = {Cheong, Wan Keng and Gholampour, Amin}, title = {Orbifold {Gromov{\textendash}Witten} theory of the symmetric product of {\ensuremath{\mathscr{A}}r}}, journal = {Geometry & topology}, pages = {475--526}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.475}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/} }
TY - JOUR AU - Cheong, Wan Keng AU - Gholampour, Amin TI - Orbifold GromovâWitten theory of the symmetric product of đr JO - Geometry & topology PY - 2012 SP - 475 EP - 526 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/ DO - 10.2140/gt.2012.16.475 ID - GT_2012_16_1_a8 ER -
Cheong, Wan Keng; Gholampour, Amin. Orbifold GromovâWitten theory of the symmetric product of đr. Geometry & topology, Tome 16 (2012) no. 1, pp. 475-526. doi : 10.2140/gt.2012.16.475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.475/
[1] Twisted bundles and admissible covers, Comm. Algebra 31 (2003) 3547
, , ,[2] Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1
, , ,[3] Gromov-Witten theory of DeligneâMumford stacks, Amer. J. Math. 130 (2008) 1337
, , ,[4] The crepant resolution conjecture, from: "Algebraic geometryâSeattle 2005. Part 1" (editors D Abramovich, others), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23
, ,[5] The local GromovâWitten theory of curves, J. Amer. Math. Soc. 21 (2008) 101
, ,[6] Orbifold GromovâWitten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25
, ,[7] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1
, ,[8] Strengthening the cohomological crepant resolution conjecture for HilbertâChow morphisms
,[9] Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43
, , ,[10] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[11] Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275
,[12] The cohomology rings of Hilbert schemes via Jack polynomials, from: "Algebraic structures and moduli spaces" (editors J Hurtubise, E Markman), CRM Proc. Lecture Notes 38, Amer. Math. Soc. (2004) 249
, , ,[13] GromovâWitten theory of $\mathcal A_n$âresolutions, Geom. Topol. 13 (2009) 1729
,[14] DonaldsonâThomas theory of $\mathcal{A}_n\times P^1$, Compos. Math. 145 (2009) 1249
, ,[15] Quantum cohomology of the Hilbert scheme of points on $\mathcal A_n$âresolutions, J. Amer. Math. Soc. 22 (2009) 1055
, ,[16] Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999)
,[17] The local DonaldsonâThomas theory of curves, Geom. Topol. 14 (2010) 1503
, ,[18] Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523
, ,Cité par Sources :