Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces
Geometry & topology, Tome 16 (2012) no. 1, pp. 433-473.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The decomposition theorem for smooth projective morphisms π: X B says that Rπ decomposes as Riπ[i]. We describe simple examples where it is not possible to have such a decomposition compatible with cup product, even after restriction to Zariski dense open sets of B. We prove however that this is always possible for families of K3 surfaces (after shrinking the base), and show how this result relates to a result by Beauville and the author [J. Algebraic Geom. 13 (2004) 417–426] on the Chow ring of a K3 surface S. We give two proofs of this result, the first one involving K–autocorrespondences of K3 surfaces, seen as analogues of isogenies of abelian varieties, the second one involving a certain decomposition of the small diagonal in S3 obtained by Beauville and the author. We also prove an analogue of such a decomposition of the small diagonal in X3 for Calabi–Yau hypersurfaces X in n, which in turn provides strong restrictions on their Chow ring.

DOI : 10.2140/gt.2012.16.433
Classification : 14C15, 14C30, 14D99
Keywords: decomposition theorem, Chow ring, decomposition of the small diagonal

Voisin, Claire 1

1 CNRS, Institut de Mathématiques de Jussieu, Case 247, 4 Place Jussieu, 75005 Paris, France
@article{GT_2012_16_1_a7,
     author = {Voisin, Claire},
     title = {Chow rings and decomposition theorems for {K3} surfaces and {Calabi{\textendash}Yau} hypersurfaces},
     journal = {Geometry & topology},
     pages = {433--473},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.433},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces
JO  - Geometry & topology
PY  - 2012
SP  - 433
EP  - 473
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/
DO  - 10.2140/gt.2012.16.433
ID  - GT_2012_16_1_a7
ER  - 
%0 Journal Article
%A Voisin, Claire
%T Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces
%J Geometry & topology
%D 2012
%P 433-473
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/
%R 10.2140/gt.2012.16.433
%F GT_2012_16_1_a7
Voisin, Claire. Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces. Geometry & topology, Tome 16 (2012) no. 1, pp. 433-473. doi : 10.2140/gt.2012.16.433. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/

[1] A Beauville, On the splitting of the Bloch–Beilinson filtration, from: "Algebraic cycles and motives. Vol. 2" (editors J Nagel, C Peters), London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38

[2] A Beauville, C Voisin, On the Chow ring of a $K`3$ surface, J. Algebraic Geom. 13 (2004) 417

[3] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235

[4] P Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968) 259

[5] P Deligne, Décompositions dans la catégorie dérivée, from: "Motives (Seattle, WA, 1991)" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 115

[6] C Deninger, J Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201

[7] W Fulton, Intersection theory, Ergeb. Math. Grenzgeb. 2, Springer (1984)

[8] R Godement, Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind. 1252, Hermann (1964)

[9] D Huybrechts, A note on the Bloch–Beilinson conjecture for $K`3$ surfaces and spherical objects, Pure Appl. Math. Q. 7 (2011) 1395

[10] D Mumford, Rational equivalence of $0$–cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195

[11] J P Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990) 190

[12] C Voisin, Hodge theory and complex algebraic geometry, II, Cambridge Studies in Adv. Math. 77, Cambridge Univ. Press (2003)

[13] C Voisin, Intrinsic pseudo-volume forms and $K$–correspondences, from: "The Fano Conference" (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 761

[14] C Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613

[15] C Voisin, Chow rings, decomposition of the diagonal and the topology of families, to appear in the Annals of Math. Studies, Princeton Univ. Press (2011)

Cité par Sources :