Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The decomposition theorem for smooth projective morphisms says that decomposes as . We describe simple examples where it is not possible to have such a decomposition compatible with cup product, even after restriction to Zariski dense open sets of . We prove however that this is always possible for families of surfaces (after shrinking the base), and show how this result relates to a result by Beauville and the author [J. Algebraic Geom. 13 (2004) 417–426] on the Chow ring of a surface . We give two proofs of this result, the first one involving –autocorrespondences of surfaces, seen as analogues of isogenies of abelian varieties, the second one involving a certain decomposition of the small diagonal in obtained by Beauville and the author. We also prove an analogue of such a decomposition of the small diagonal in for Calabi–Yau hypersurfaces in , which in turn provides strong restrictions on their Chow ring.
Voisin, Claire 1
@article{GT_2012_16_1_a7, author = {Voisin, Claire}, title = {Chow rings and decomposition theorems for {K3} surfaces and {Calabi{\textendash}Yau} hypersurfaces}, journal = {Geometry & topology}, pages = {433--473}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.433}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/} }
TY - JOUR AU - Voisin, Claire TI - Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces JO - Geometry & topology PY - 2012 SP - 433 EP - 473 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/ DO - 10.2140/gt.2012.16.433 ID - GT_2012_16_1_a7 ER -
Voisin, Claire. Chow rings and decomposition theorems for K3 surfaces and Calabi–Yau hypersurfaces. Geometry & topology, Tome 16 (2012) no. 1, pp. 433-473. doi : 10.2140/gt.2012.16.433. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.433/
[1] On the splitting of the Bloch–Beilinson filtration, from: "Algebraic cycles and motives. Vol. 2" (editors J Nagel, C Peters), London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38
,[2] On the Chow ring of a $K`3$ surface, J. Algebraic Geom. 13 (2004) 417
, ,[3] Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235
, ,[4] Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968) 259
,[5] Décompositions dans la catégorie dérivée, from: "Motives (Seattle, WA, 1991)" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 115
,[6] Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991) 201
, ,[7] Intersection theory, Ergeb. Math. Grenzgeb. 2, Springer (1984)
,[8] Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind. 1252, Hermann (1964)
,[9] A note on the Bloch–Beilinson conjecture for $K`3$ surfaces and spherical objects, Pure Appl. Math. Q. 7 (2011) 1395
,[10] Rational equivalence of $0$–cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195
,[11] On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990) 190
,[12] Hodge theory and complex algebraic geometry, II, Cambridge Studies in Adv. Math. 77, Cambridge Univ. Press (2003)
,[13] Intrinsic pseudo-volume forms and $K$–correspondences, from: "The Fano Conference" (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 761
,[14] On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613
,[15] Chow rings, decomposition of the diagonal and the topology of families, to appear in the Annals of Math. Studies, Princeton Univ. Press (2011)
,Cité par Sources :