A cohomological characterisation of Yu’s property A for metric spaces
Geometry & topology, Tome 16 (2012) no. 1, pp. 391-432.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a new framework for cohomology of discrete metric spaces and groups which simultaneously generalises group cohomology, Roe’s coarse cohomology, Gersten’s –cohomology and Johnson’s bounded cohomology. In this framework we give an answer to Higson’s question concerning the existence of a cohomological characterisation of Yu’s property A, analogous to Johnson’s characterisation of amenability. In particular, we introduce an analogue of invariant mean for metric spaces with property A. As an application we extend Guentner’s result that box spaces of a finitely generated group have property A if and only if the group is amenable. This provides an alternative proof of Nowak’s result that the infinite dimensional cube does not have property A.

DOI : 10.2140/gt.2012.16.391
Keywords: Property A, bounded cohomology, coarse geometry, group cohomology

Brodzki, Jacek 1 ; Niblo, Graham 1 ; Wright, Nick 1

1 School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1SH, England
@article{GT_2012_16_1_a6,
     author = {Brodzki, Jacek and Niblo, Graham and Wright, Nick},
     title = {A cohomological characterisation of {Yu{\textquoteright}s} property {A} for metric spaces},
     journal = {Geometry & topology},
     pages = {391--432},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.391},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/}
}
TY  - JOUR
AU  - Brodzki, Jacek
AU  - Niblo, Graham
AU  - Wright, Nick
TI  - A cohomological characterisation of Yu’s property A for metric spaces
JO  - Geometry & topology
PY  - 2012
SP  - 391
EP  - 432
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/
DO  - 10.2140/gt.2012.16.391
ID  - GT_2012_16_1_a6
ER  - 
%0 Journal Article
%A Brodzki, Jacek
%A Niblo, Graham
%A Wright, Nick
%T A cohomological characterisation of Yu’s property A for metric spaces
%J Geometry & topology
%D 2012
%P 391-432
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/
%R 10.2140/gt.2012.16.391
%F GT_2012_16_1_a6
Brodzki, Jacek; Niblo, Graham; Wright, Nick. A cohomological characterisation of Yu’s property A for metric spaces. Geometry & topology, Tome 16 (2012) no. 1, pp. 391-432. doi : 10.2140/gt.2012.16.391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/

[1] J Brodzki, G A Niblo, P W Nowak, N J Wright, Amenable actions, invariant means and bounded cohomology

[2] J Brodzki, G A Niblo, P W Nowak, N J Wright, A homological characterization of topological amenability

[3] J Brodzki, G A Niblo, N J Wright, Pairings, duality, amenability, and bounded cohomology, to appear in J. Eur. Math. Soc. (JEMS)

[4] R G Douglas, P W Nowak, Invariant expectations and vanishing of bounded cohomology for exact groups, J. Topol. Anal. 3 (2011) 89

[5] S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031

[6] N Higson, J Roe, Amenable group actions and the Novikov conjecture, J. Reine Angew. Math. 519 (2000) 143

[7] B E Johnson, Cohomology of Banach Algebras, Mem. Amer. Math. Soc. 127, American Mathematical Society (1972)

[8] A Khukhro, N J Wright, Expanders and property A, Algebr. Geom. Topol. 12 (2012) 37

[9] P W Nowak, Coarsely embeddable metric spaces without Property A, J. Funct. Anal. 252 (2007) 126

[10] N Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 691

[11] H Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford (1968)

[12] J Roe, Exotic cohomology and index theory, Bull. Amer. Math. Soc. 23 (1990) 447

[13] J Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society (2003)

[14] J Von Neumann, Zur allgemeinen Theorie des Ma\sses, Fund. Math. 13 (1929) 73

[15] G Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000) 201

Cité par Sources :