Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a new framework for cohomology of discrete metric spaces and groups which simultaneously generalises group cohomology, Roe’s coarse cohomology, Gersten’s –cohomology and Johnson’s bounded cohomology. In this framework we give an answer to Higson’s question concerning the existence of a cohomological characterisation of Yu’s property A, analogous to Johnson’s characterisation of amenability. In particular, we introduce an analogue of invariant mean for metric spaces with property A. As an application we extend Guentner’s result that box spaces of a finitely generated group have property A if and only if the group is amenable. This provides an alternative proof of Nowak’s result that the infinite dimensional cube does not have property A.
Brodzki, Jacek 1 ; Niblo, Graham 1 ; Wright, Nick 1
@article{GT_2012_16_1_a6, author = {Brodzki, Jacek and Niblo, Graham and Wright, Nick}, title = {A cohomological characterisation of {Yu{\textquoteright}s} property {A} for metric spaces}, journal = {Geometry & topology}, pages = {391--432}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.391}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/} }
TY - JOUR AU - Brodzki, Jacek AU - Niblo, Graham AU - Wright, Nick TI - A cohomological characterisation of Yu’s property A for metric spaces JO - Geometry & topology PY - 2012 SP - 391 EP - 432 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/ DO - 10.2140/gt.2012.16.391 ID - GT_2012_16_1_a6 ER -
%0 Journal Article %A Brodzki, Jacek %A Niblo, Graham %A Wright, Nick %T A cohomological characterisation of Yu’s property A for metric spaces %J Geometry & topology %D 2012 %P 391-432 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/ %R 10.2140/gt.2012.16.391 %F GT_2012_16_1_a6
Brodzki, Jacek; Niblo, Graham; Wright, Nick. A cohomological characterisation of Yu’s property A for metric spaces. Geometry & topology, Tome 16 (2012) no. 1, pp. 391-432. doi : 10.2140/gt.2012.16.391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.391/
[1] Amenable actions, invariant means and bounded cohomology
, , , ,[2] A homological characterization of topological amenability
, , , ,[3] Pairings, duality, amenability, and bounded cohomology, to appear in J. Eur. Math. Soc. (JEMS)
, , ,[4] Invariant expectations and vanishing of bounded cohomology for exact groups, J. Topol. Anal. 3 (2011) 89
, ,[5] Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031
,[6] Amenable group actions and the Novikov conjecture, J. Reine Angew. Math. 519 (2000) 143
, ,[7] Cohomology of Banach Algebras, Mem. Amer. Math. Soc. 127, American Mathematical Society (1972)
,[8] Expanders and property A, Algebr. Geom. Topol. 12 (2012) 37
, ,[9] Coarsely embeddable metric spaces without Property A, J. Funct. Anal. 252 (2007) 126
,[10] Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 691
,[11] Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford (1968)
,[12] Exotic cohomology and index theory, Bull. Amer. Math. Soc. 23 (1990) 447
,[13] Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society (2003)
,[14] Zur allgemeinen Theorie des Ma\sses, Fund. Math. 13 (1929) 73
,[15] The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000) 201
,Cité par Sources :