Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The paper is a summary of the results of the authors concerning computations of symplectic invariants of Weinstein manifolds and contains some examples and applications. Proofs are sketched. The detailed proofs will appear in a forthcoming paper.
In the Appendix written by S Ganatra and M Maydanskiy it is shown that the results of this paper imply P Seidel’s conjecture from [Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415–434].
Bourgeois, Frédéric 1 ; Ekholm, Tobias 2 ; Eliashberg, Yakov 3
@article{GT_2012_16_1_a5, author = {Bourgeois, Fr\'ed\'eric and Ekholm, Tobias and Eliashberg, Yakov}, title = {Effect of {Legendrian} surgery}, journal = {Geometry & topology}, pages = {301--389}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2012}, doi = {10.2140/gt.2012.16.301}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/} }
TY - JOUR AU - Bourgeois, Frédéric AU - Ekholm, Tobias AU - Eliashberg, Yakov TI - Effect of Legendrian surgery JO - Geometry & topology PY - 2012 SP - 301 EP - 389 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/ DO - 10.2140/gt.2012.16.301 ID - GT_2012_16_1_a5 ER -
Bourgeois, Frédéric; Ekholm, Tobias; Eliashberg, Yakov. Effect of Legendrian surgery. Geometry & topology, Tome 16 (2012) no. 1, pp. 301-389. doi : 10.2140/gt.2012.16.301. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/
[1] On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254
, ,[2] Altering symplectic manifolds by homologous recombination
, ,[3] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627
, ,[4] Some remarks on symplectic monodromy of Milnor fibrations, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 99
,[5] Elements of the representation theory of associative algebras. Vol. 1: Techniques of representation theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press (2006)
, , ,[6] A Morse–Bott approach to contact homology, PhD thesis, Stanford University (2002)
,[7] Legendrian surgery triangles for contact and symplectic homology, in preparation
, , ,[8] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[9] An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009) 611
, ,[10] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[11] Subcritical Stein manifolds are split
,[12] Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. 4 (2002) 115
,[13] Symplectic geometry of Stein manifolds, book in preparation
, ,[14] Cluster homology
, ,[15] Morse flow trees and Legendrian contact homology in $1$–jet spaces, Geom. Topol. 11 (2007) 1083
,[16] Rational symplectic field theory over $\mathbb Z_2$ for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641
,[17] A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1
, , ,[18] The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177
, , ,[19] Non-isotopic Legendrian submanifolds in $\mathbb R^{2n+1}$, J. Differential Geom. 71 (2005) 85
, , ,[20] Legendrian contact homology in $P\times\mathbb R$, Trans. Amer. Math. Soc. 359 (2007) 3301
, , ,[21] Isotopies of Legendrian $1$–knots and Legendrian $2$–tori, J. Symplectic Geom. 6 (2008) 407
, ,[22] Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry (Montreal, PQ, 1995)" (editors J Hurtubise, F Lalonde, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49
,[23] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[24] Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135
, ,[25] Symplectic homology I: Open sets in $\mathbb{C}^n$, Math. Z. 215 (1994) 37
, ,[26] The Arnold–Givental conjecture and moment Floer homology, Int. Math. Res. Not. 2004 (2004) 2179
,[27] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96
, ,[28] Lagrangian intersection Floer theory: anomaly and obstruction. PartS I–II, AMS/IP Studies in Advanced Math. 46, American Math. Soc. (2009)
, , , ,[29] The symplectic geometry of cotangent bundles from a categorical viewpoint, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 1
, , ,[30] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[31] A general Fredholm theory I: a splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841
, , ,[32] A general Fredholm theory II: Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206
, , ,[33] A general Fredholm theory III: Fredholm functors and polyfolds, Geom. Topol. 13 (2009) 2279
, , ,[34] Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3 (2010) 157
, ,[35] Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877
,[36] Invariants of Legendrian knots in circle bundles, Commun. Contemp. Math. 5 (2003) 569
,[37] More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 429
,[38] Vanishing cycles and mutation, from: "European Congress of Mathematics, Vol. II (Barcelona, 2000)" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 202, Birkhäuser (2001) 65
,[39] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003
,[40] $A_\infty$–subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008) 83
,[41] Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Math., European Math. Soc. (2008)
,[42] Symplectic homology as Hochschild homology, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415
,[43] Homological mirror symmetry for the genus two curve, J. Algebraic Geom. 20 (2011) 727
,[44] On the homological mirror symmetry conjecture for pairs of pants and affine Fermat hypersurfaces
,[45] Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985
,[46] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,[47] Cylindrical contact homology of subcritical Stein-fillable contact manifolds, Geom. Topol. 8 (2004) 1243
,Cité par Sources :