Effect of Legendrian surgery
Geometry & topology, Tome 16 (2012) no. 1, pp. 301-389.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The paper is a summary of the results of the authors concerning computations of symplectic invariants of Weinstein manifolds and contains some examples and applications. Proofs are sketched. The detailed proofs will appear in a forthcoming paper.

In the Appendix written by S Ganatra and M Maydanskiy it is shown that the results of this paper imply P Seidel’s conjecture from [Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415–434].

DOI : 10.2140/gt.2012.16.301
Classification : 53D05, 53D42, 57R17
Keywords: Legendrian surgery, symplectic homology, Seidel conjecture, Weinstein manifold

Bourgeois, Frédéric 1 ; Ekholm, Tobias 2 ; Eliashberg, Yakov 3

1 Département de Mathématiques, Université Libre de Bruxelles, CP 218, Boulevard du Triomphe, 1050 Bruxelles, Belgium
2 Department of Mathematics, University of Uppsala, PO Box 480, SE-751 06 Uppsala, Sweden
3 Department of Mathematics, Stanford University, Stanford CA 94305, USA
@article{GT_2012_16_1_a5,
     author = {Bourgeois, Fr\'ed\'eric and Ekholm, Tobias and Eliashberg, Yakov},
     title = {Effect of {Legendrian} surgery},
     journal = {Geometry & topology},
     pages = {301--389},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.301},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/}
}
TY  - JOUR
AU  - Bourgeois, Frédéric
AU  - Ekholm, Tobias
AU  - Eliashberg, Yakov
TI  - Effect of Legendrian surgery
JO  - Geometry & topology
PY  - 2012
SP  - 301
EP  - 389
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/
DO  - 10.2140/gt.2012.16.301
ID  - GT_2012_16_1_a5
ER  - 
%0 Journal Article
%A Bourgeois, Frédéric
%A Ekholm, Tobias
%A Eliashberg, Yakov
%T Effect of Legendrian surgery
%J Geometry & topology
%D 2012
%P 301-389
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/
%R 10.2140/gt.2012.16.301
%F GT_2012_16_1_a5
Bourgeois, Frédéric; Ekholm, Tobias; Eliashberg, Yakov. Effect of Legendrian surgery. Geometry & topology, Tome 16 (2012) no. 1, pp. 301-389. doi : 10.2140/gt.2012.16.301. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.301/

[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254

[2] M Abouzaid, P Seidel, Altering symplectic manifolds by homologous recombination

[3] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627

[4] V I Arnol’D, Some remarks on symplectic monodromy of Milnor fibrations, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 99

[5] I Assem, D Simson, A Skowroński, Elements of the representation theory of associative algebras. Vol. 1: Techniques of representation theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press (2006)

[6] F Bourgeois, A Morse–Bott approach to contact homology, PhD thesis, Stanford University (2002)

[7] F Bourgeois, T Ekholm, Y Eliashberg, Legendrian surgery triangles for contact and symplectic homology, in preparation

[8] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[9] F Bourgeois, A Oancea, An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009) 611

[10] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[11] K Cieliebak, Subcritical Stein manifolds are split

[12] K Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. 4 (2002) 115

[13] K Cieliebak, Y Eliashberg, Symplectic geometry of Stein manifolds, book in preparation

[14] O Cornea, F Lalonde, Cluster homology

[15] T Ekholm, Morse flow trees and Legendrian contact homology in $1$–jet spaces, Geom. Topol. 11 (2007) 1083

[16] T Ekholm, Rational symplectic field theory over $\mathbb Z_2$ for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641

[17] T Ekholm, J Etnyre, J M Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009) 1

[18] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in $\mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005) 177

[19] T Ekholm, J Etnyre, M Sullivan, Non-isotopic Legendrian submanifolds in $\mathbb R^{2n+1}$, J. Differential Geom. 71 (2005) 85

[20] T Ekholm, J Etnyre, M Sullivan, Legendrian contact homology in $P\times\mathbb R$, Trans. Amer. Math. Soc. 359 (2007) 3301

[21] T Ekholm, T Kálmán, Isotopies of Legendrian $1$–knots and Legendrian $2$–tori, J. Symplectic Geom. 6 (2008) 407

[22] Y Eliashberg, Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry (Montreal, PQ, 1995)" (editors J Hurtubise, F Lalonde, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49

[23] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[24] Y Eliashberg, M Gromov, Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135

[25] A Floer, H Hofer, Symplectic homology I: Open sets in $\mathbb{C}^n$, Math. Z. 215 (1994) 37

[26] U Frauenfelder, The Arnold–Givental conjecture and moment Floer homology, Int. Math. Res. Not. 2004 (2004) 2179

[27] K Fukaya, Y G Oh, Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96

[28] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction. PartS I–II, AMS/IP Studies in Advanced Math. 46, American Math. Soc. (2009)

[29] K Fukaya, P Seidel, I Smith, The symplectic geometry of cotangent bundles from a categorical viewpoint, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 1

[30] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[31] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory I: a splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841

[32] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory II: Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206

[33] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory III: Fredholm functors and polyfolds, Geom. Topol. 13 (2009) 2279

[34] M Maydanskiy, P Seidel, Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3 (2010) 157

[35] M Mclean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009) 1877

[36] J M Sabloff, Invariants of Legendrian knots in circle bundles, Commun. Contemp. Math. 5 (2003) 569

[37] P Seidel, More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 429

[38] P Seidel, Vanishing cycles and mutation, from: "European Congress of Mathematics, Vol. II (Barcelona, 2000)" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 202, Birkhäuser (2001) 65

[39] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003

[40] P Seidel, $A_\infty$–subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008) 83

[41] P Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Math., European Math. Soc. (2008)

[42] P Seidel, Symplectic homology as Hochschild homology, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 415

[43] P Seidel, Homological mirror symmetry for the genus two curve, J. Algebraic Geom. 20 (2011) 727

[44] N Sheridan, On the homological mirror symmetry conjecture for pairs of pants and affine Fermat hypersurfaces

[45] C Viterbo, Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985

[46] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

[47] M L Yau, Cylindrical contact homology of subcritical Stein-fillable contact manifolds, Geom. Topol. 8 (2004) 1243

Cité par Sources :