The Ingram conjecture
Geometry & topology, Tome 16 (2012) no. 4, pp. 2481-2516.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the Ingram conjecture, ie we show that the inverse limit spaces of tent maps with different slopes in the interval [1,2] are nonhomeomorphic. Based on the structure obtained from the proof, we also show that every self-homeomorphism of the inverse limit space of a tent map is pseudo-isotopic, on the core, to some power of the shift homeomorphism.

DOI : 10.2140/gt.2012.16.2481
Classification : 54H20, 37B45, 37E05
Keywords: tent map, inverse limit space, unimodal map, classification, pseudo-isotopy

Barge, Marcy 1 ; Bruin, Henk 2 ; Štimac, Sonja 3

1 Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
2 Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria
3 Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
@article{GT_2012_16_4_a13,
     author = {Barge, Marcy and Bruin, Henk and \v{S}timac, Sonja},
     title = {The {Ingram} conjecture},
     journal = {Geometry & topology},
     pages = {2481--2516},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2012},
     doi = {10.2140/gt.2012.16.2481},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2481/}
}
TY  - JOUR
AU  - Barge, Marcy
AU  - Bruin, Henk
AU  - Štimac, Sonja
TI  - The Ingram conjecture
JO  - Geometry & topology
PY  - 2012
SP  - 2481
EP  - 2516
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2481/
DO  - 10.2140/gt.2012.16.2481
ID  - GT_2012_16_4_a13
ER  - 
%0 Journal Article
%A Barge, Marcy
%A Bruin, Henk
%A Štimac, Sonja
%T The Ingram conjecture
%J Geometry & topology
%D 2012
%P 2481-2516
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2481/
%R 10.2140/gt.2012.16.2481
%F GT_2012_16_4_a13
Barge, Marcy; Bruin, Henk; Štimac, Sonja. The Ingram conjecture. Geometry & topology, Tome 16 (2012) no. 4, pp. 2481-2516. doi : 10.2140/gt.2012.16.2481. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2481/

[1] J E Anderson, I F Putnam, Topological invariants for substitution tilings and their associated $C^{*}$–algebras, Ergodic Theory Dynam. Systems 18 (1998) 509

[2] M Barge, K M Brucks, B Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc. 124 (1996) 3563

[3] M Barge, B Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, Fund. Math. 146 (1995) 171

[4] M Barge, B Diamond, Inverse limit spaces of infinitely renormalizable maps, Topology Appl. 83 (1998) 103

[5] M Barge, B Diamond, Subcontinua of the closure of the unstable manifold at a homoclinic tangency, Ergodic Theory Dynam. Systems 19 (1999) 289

[6] M Barge, S Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity 8 (1995) 29

[7] M Barge, W T Ingram, Inverse limits on $[0,1]$ using logistic bonding maps, Topology Appl. 72 (1996) 159

[8] L Block, S Jakimovik, L Kailhofer, J Keesling, On the classification of inverse limits of tent maps, Fund. Math. 187 (2005) 171

[9] L Block, S Jakimovik, J Keesling, On Ingram's conjecture, Topology Proc. 30 (2006) 95

[10] L Block, J Keesling, B E Raines, S Štimac, Homeomorphisms of unimodal inverse limit spaces with a non-recurrent critical point, Topology Appl. 156 (2009) 2417

[11] K M Brucks, H Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160 (1999) 219

[12] K M Brucks, B Diamond, Monotonicity of auto-expansions, Phys. D 51 (1991) 39

[13] H Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Appl. 96 (1999) 191

[14] H Bruin, Inverse limit spaces of post-critically finite tent maps, Fund. Math. 165 (2000) 125

[15] H Bruin, Subcontinua of Fibonacci-like inverse limit spaces, Topology Proc. 31 (2007) 37

[16] A Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, from: "Real and complex dynamical systems" (editors B Branner, P Hjorth), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ. (1995) 65

[17] M J Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978) 25

[18] J Graczyk, G Światek, Generic hyperbolicity in the logistic family, Ann. of Math. 146 (1997) 1

[19] J Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979) 133

[20] F Hofbauer, P Raith, K Simon, Hausdorff dimension for some hyperbolic attractors with overlaps and without finite Markov partition, Ergodic Theory Dynam. Systems 27 (2007) 1143

[21] W T Ingram, Inverse limits on $[0,1]$ using tent maps and certain other piecewise linear bonding maps, from: "Continua" (editors H Cook, W T Ingram, K T Kuperberg, A Lelek, P Minc), Lecture Notes in Pure and Appl. Math. 170, Dekker (1995) 253

[22] L Kailhofer, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math. 177 (2003) 95

[23] M Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997) 185, 247

[24] W De Melo, S Van Strien, One-dimensional dynamics, Ergeb. Math. Grenzgeb. 25, Springer (1993)

[25] J Milnor, W Thurston, On iterated maps of the interval, from: "Dynamical systems" (editor J C Alexander), Lecture Notes in Math. 1342, Springer (1988) 465

[26] M Misiurewicz, Embedding inverse limits of interval maps as attractors, Fund. Math. 125 (1985) 23

[27] M Misiurewicz, W Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980) 45

[28] B E Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math. 182 (2004) 241

[29] B E Raines, S Štimac, A classification of inverse limit spaces of tent maps with a nonrecurrent critical point, Algebr. Geom. Topol. 9 (2009) 1049

[30] D Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35 (1978) 260

[31] S Štimac, A classification of inverse limit spaces of tent maps with finite critical orbit, Topology Appl. 154 (2007) 2265

[32] R Swanson, H Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000) 611

[33] W Szczechla, Inverse limits of certain interval mappings as attractors in two dimensions, Fund. Math. 133 (1989) 1

[34] C Tresser, P Coullet, Itérations d'endomorphismes et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B 287 (1978)

[35] R F Williams, One-dimensional non-wandering sets, Topology 6 (1967) 473

[36] R F Williams, Classification of one dimensional attractors, from: "Global Analysis", Proc. Symp. Pure Math. 14, Amer. Math. Soc. (1970) 341

Cité par Sources :