Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study Alexandrov spaces of nonnegative curvature whose boundaries consist of several strata of codimension 1. If the space is compact and the common intersection of all boundary strata is empty, then the space is a metric product. In particular, this is fulfilled if the compact space has dimension and contains more than boundary strata. The splitting factors are in general non-flat.
Wörner, Andreas 1
@article{GT_2012_16_4_a11, author = {W\"orner, Andreas}, title = {A splitting theorem for nonnegatively curved {Alexandrov} spaces}, journal = {Geometry & topology}, pages = {2391--2426}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2012}, doi = {10.2140/gt.2012.16.2391}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2391/} }
TY - JOUR AU - Wörner, Andreas TI - A splitting theorem for nonnegatively curved Alexandrov spaces JO - Geometry & topology PY - 2012 SP - 2391 EP - 2426 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2391/ DO - 10.2140/gt.2012.16.2391 ID - GT_2012_16_4_a11 ER -
Wörner, Andreas. A splitting theorem for nonnegatively curved Alexandrov spaces. Geometry & topology, Tome 16 (2012) no. 4, pp. 2391-2426. doi : 10.2140/gt.2012.16.2391. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2391/
[1] A cone splitting theorem for Alexandrov spaces, Pacific J. Math. 218 (2005) 1
, ,[2] A course in metric geometry, Graduate Studies in Mathematics 33, American Mathematical Society (2001)
, , ,[3] A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222
, , ,[4] The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72) 119
, ,[5] On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972) 413
, ,[6] A radius sphere theorem, Invent. Math. 112 (1993) 577
, ,[7] Perelman's stability theorem, from: "Surveys in differential geometry Vol XI", Surv. Differ. Geom. 11, Int. Press, Somerville, MA (2007) 103
,[8] Allgemeine Theorie der Submetrien und verwandte mathematische Probleme, Bonner Mathematische Schriften 347, Universität Bonn Mathematisches Institut (2002)
,[9] Open map theorem for metric spaces, Algebra i Analiz 17 (2005) 139
,[10] A splitting theorem for Alexandrov spaces, Pacific J. Math. 204 (2002) 445
,[11] The asymptotic behavior of the set of rays, Comment. Math. Helv. 72 (1997) 331
,[12] Metric structure of a certain class of spaces that contain straight lines, Ukrain. Geometr. Sb. Vyp. 4 (1967) 43
,[13] A splitting theorem for infinite dimensional Alexandrov spaces with nonnegative curvature and its applications, Geom. Dedicata 144 (2010) 101
,[14] Differential geometric aspects of Alexandrov spaces, from: "Comparison geometry (Berkeley, CA, 1993–94)", Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 135
,[15] The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994) 629
, ,[16] Alexandrov's spaces with curvatures bounded from below II, preprint (1991)
,[17] Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993) 232
,[18] Proof of the soul conjecture of Cheeger and Gromoll, J. Differential Geom. 40 (1994) 209
,[19] Collapsing with no proper extremal subsets, from: "Comparison geometry (Berkeley, CA, 1993–94)", Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 149
,[20] Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem, Algebra i Analiz 5 (1993) 242
, ,[21] Quasigeodesics and gradient curves in Alexandrov spaces, preprint (1995)
, ,[22] Applications of quasigeodesics and gradient curves, from: "Comparison geometry (Berkeley, CA, 1993–94)", Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 203
,[23] Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998) 123
,[24] Semiconcave functions in Alexandrov's geometry, from: "Surveys in differential geometry Vol XI", Surv. Differ. Geom. 11, Int. Press, Somerville, MA (2007) 137
,[25] Convex sets in a manifold of nonnegative curvature, Mat. Zametki 26 (1979) 129, 159
,[26] Splitting theorems for non-negatively curved open manifolds with large ideal boundary, Math. Z. 212 (1993) 223
,[27] A splitting theorem for open nonnegatively curved manifolds, Manuscripta Math. 61 (1988) 315
,[28] Riemannian spaces which contain straight lines, Amer. Math. Soc. Transl. Ser. 2 37 (1964) 287
,[29] A splitting theorem for 4–dimensional manifolds of nonnegative curvature, Proc. Amer. Math. Soc. 104 (1988) 265
,[30] Positively curved manifolds with symmetry, Ann. of Math. 163 (2006) 607
,[31] Boundary strata of nonnegatively curved Alexandrov spaces and a splitting theorem, PhD thesis, WWU Münster (2010)
,[32] Space of souls in a complete open manifold of nonnegative curvature, J. Differential Geom. 32 (1990) 429
,Cité par Sources :