Lagrangian homology spheres in (Am) Milnor fibres via ℂ∗–equivariant A∞–modules
Geometry & topology, Tome 16 (2012) no. 4, pp. 2343-2389.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We establish restrictions on Lagrangian embeddings of spheres, and more generally rational homology spheres, into certain open symplectic manifolds, namely the (Am) Milnor fibres of odd complex dimension. This relies on general considerations about equivariant objects in module categories (which may be applicable in other situations as well), as well as results of Ishii–Ueda–Uehara concerning the derived categories of coherent sheaves on the resolutions of (Am) surface singularities.

DOI : 10.2140/gt.2012.16.2343
Classification : 53D12, 53D40, 16E45, 18E30
Keywords: Lagrangian submanifold, Floer cohomology, equivariant module

Seidel, Paul 1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States
@article{GT_2012_16_4_a10,
     author = {Seidel, Paul},
     title = {Lagrangian homology spheres in {(Am)} {Milnor} fibres via {\ensuremath{\mathbb{C}}\ensuremath{*}{\textendash}equivariant} {A\ensuremath{\infty}{\textendash}modules}},
     journal = {Geometry & topology},
     pages = {2343--2389},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2012},
     doi = {10.2140/gt.2012.16.2343},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2343/}
}
TY  - JOUR
AU  - Seidel, Paul
TI  - Lagrangian homology spheres in (Am) Milnor fibres via ℂ∗–equivariant A∞–modules
JO  - Geometry & topology
PY  - 2012
SP  - 2343
EP  - 2389
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2343/
DO  - 10.2140/gt.2012.16.2343
ID  - GT_2012_16_4_a10
ER  - 
%0 Journal Article
%A Seidel, Paul
%T Lagrangian homology spheres in (Am) Milnor fibres via ℂ∗–equivariant A∞–modules
%J Geometry & topology
%D 2012
%P 2343-2389
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2343/
%R 10.2140/gt.2012.16.2343
%F GT_2012_16_4_a10
Seidel, Paul. Lagrangian homology spheres in (Am) Milnor fibres via ℂ∗–equivariant A∞–modules. Geometry & topology, Tome 16 (2012) no. 4, pp. 2343-2389. doi : 10.2140/gt.2012.16.2343. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2343/

[1] M Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. (2010) 191

[2] M Abouzaid, I Smith, Exact Lagrangians in plumbings

[3] V I Arnold, V V Goryunov, O V Lyashko, V A Vasil’Ev, Singularity theory. I, Springer (1998)

[4] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5

[5] J Bernstein, Algebraic theory of $D$–modules, unpublished lecture notes

[6] R Bezrukavnikov, Perverse coherent sheaves (after Deligne)

[7] R Bezrukavnikov, M Finkelberg, V Ginzburg, Cherednik algebras and Hilbert schemes in characteristic $p$

[8] A Bondal, M Van Den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003) 1, 258

[9] A I Bondal, M M Kapranov, Homogeneous bundles, from: "Helices and vector bundles", London Math. Soc. Lecture Note Ser. 148, Cambridge Univ. Press (1990) 45

[10] A Căldăraru, S Willerton, The Mukai pairing. I. A categorical approach, New York J. Math. 16 (2010) 61

[11] A Dold, Zur Homotopietheorie der Kettenkomplexe, Math. Ann. 140 (1960) 278

[12] V Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004) 643

[13] J D Evans, Symplectic mapping class groups of some Stein and rational surfaces, J. Symplectic Geom. 9 (2011) 45

[14] G Hochschild, Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961) 492

[15] M A Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002) 317

[16] A Ishii, K Ueda, H Uehara, Stability conditions on $A_n$–singularities, J. Differential Geom. 84 (2010) 87

[17] A Ishii, H Uehara, Autoequivalences of derived categories on the minimal resolutions of $A_n$–singularities on surfaces, J. Differential Geom. 71 (2005) 385

[18] B Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998) 223

[19] B Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1

[20] B Keller, Bimodule complexes via strong homotopy actions, Algebr. Represent. Theory 3 (2000) 357

[21] B Keller, Introduction to $A$–infinity algebras and modules, Homology Homotopy Appl. 3 (2001) 1

[22] B Keller, $A$–infinity algebras, modules and functor categories, from: "Trends in representation theory of algebras and related topics" (editors J A de la Peña, R Bautista), Contemp. Math. 406, Amer. Math. Soc. (2006) 67

[23] B Keller, On differential graded categories, from: "International Congress of Mathematicians. Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc., Zürich (2006) 151

[24] M Khovanov, P Seidel, Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002) 203

[25] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)" (editor S D Chatterji), Birkhäuser (1995) 120

[26] M Kontsevich, Y Soibelman, Notes on $A_\infty$–algebras, $A_\infty$–categories and non-commutative geometry, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 153

[27] K Lefèvre-Hasegawa, Sur les $A_\infty$–catégories, PhD thesis, Université Paris 7 (2002)

[28] Y Lekili, M Maydanskiy, The symplectic topology of some rational homology balls

[29] Y Lekili, T Perutz, Fukaya categories of the torus and Dehn surgery, Proc. Natl. Acad. Sci. USA 108 (2011) 8106

[30] M Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006) 175

[31] J L Loday, Cyclic homology, Grundl. Math. Wissen. 301, Springer (1992)

[32] W Lück, A Ranicki, Chain homotopy projections, J. Algebra 120 (1989) 361

[33] J Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton Univ. Press (1968)

[34] W Müller, The asymptotics of the Ray–Singer analytic torsion of hyperbolic $3$–manifolds

[35] A Polishchuk, $K$–theoretic exceptional collections at roots of unity, J. K-Theory 7 (2011) 169

[36] A F Ritter, Deformations of symplectic cohomology and exact Lagrangians in ALE spaces, Geom. Funct. Anal. 20 (2010) 779

[37] R Rouquier, A Zimmermann, Picard groups for derived module categories, Proc. London Math. Soc. 87 (2003) 197

[38] P Seidel, Abstract analogues of flux as symplectic invariants

[39] P Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential Geom. 52 (1999) 145

[40] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003

[41] P Seidel, Exact Lagrangian submanifolds in $T^{*}S^n$ and the graded Kronecker quiver, from: "Different faces of geometry" (editors S Donaldson, Y Eliashberg, M Gromov), Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum (2004) 349

[42] P Seidel, $A_\infty$–subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008) 83

[43] P Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lect. in Adv. Math. 8, Europ. Math. Soc. (2008)

[44] P Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Comm. Math. Phys. 297 (2010) 515

[45] P Seidel, I Smith, Localization for involutions in Floer cohomology, Geom. Funct. Anal. 20 (2010) 1464

[46] P Seidel, J P Solomon, Symplectic cohomology and $q$–intersection numbers, Geom. Funct. Anal. 22 (2012) 443

[47] P Seidel, R Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001) 37

[48] D Shklyarov, Hirzebruch–Riemann–Roch theorem for DG algebras

[49] B Toën, M Vaquié, Moduli of objects in dg–categories, Ann. Sci. École Norm. Sup. 40 (2007) 387

Cité par Sources :