Krull dimension for limit groups
Geometry & topology, Tome 16 (2012) no. 1, pp. 219-299.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that varieties defined over free groups have finite Krull dimension, answering a question of Z Sela.

DOI : 10.2140/gt.2012.16.219
Keywords: limit group, krull dimension

Louder, Larsen 1

1 Department of Mathematics, University of Michigan, East Hall, 530 Church Street, Ann Arbor MI 48109-1043, USA
@article{GT_2012_16_1_a4,
     author = {Louder, Larsen},
     title = {Krull dimension for limit groups},
     journal = {Geometry & topology},
     pages = {219--299},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.219},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.219/}
}
TY  - JOUR
AU  - Louder, Larsen
TI  - Krull dimension for limit groups
JO  - Geometry & topology
PY  - 2012
SP  - 219
EP  - 299
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.219/
DO  - 10.2140/gt.2012.16.219
ID  - GT_2012_16_1_a4
ER  - 
%0 Journal Article
%A Louder, Larsen
%T Krull dimension for limit groups
%J Geometry & topology
%D 2012
%P 219-299
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.219/
%R 10.2140/gt.2012.16.219
%F GT_2012_16_1_a4
Louder, Larsen. Krull dimension for limit groups. Geometry & topology, Tome 16 (2012) no. 1, pp. 219-299. doi : 10.2140/gt.2012.16.219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.219/

[1] G Baumslag, A remark on generalized free products, Proc. Amer. Math. Soc. 13 (1962) 53

[2] G Baumslag, A Myasnikov, V Remeslennikov, Algebraic geometry over groups, from: "Algorithmic problems in groups and semigroups (Lincoln, NE, 1998)" (editors J C Birget, S Margolis, J Meakin, M Sapir), Trends Math., Birkhäuser (2000) 35

[3] M Bestvina, M Feighn, Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449

[4] M Bestvina, M Feighn, Notes on Sela's work: limit groups and Makanin–Razborov diagrams, from: "Geometric and cohomological methods in group theory" (editors M R Bridson, P H Kropholler, I J Leary), London Math. Soc. Lecture Note Ser. 358, Cambridge Univ. Press (2009) 1

[5] C Champetier, V Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005) 1

[6] M J Dunwoody, Folding sequences, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 139

[7] M J Dunwoody, M E Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25

[8] K Fujiwara, P Papasoglu, JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006) 70

[9] O Kharlampovich, A Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006) 451

[10] L Louder, Scott complexity and adjoining roots to finitely generated groups

[11] E Rips, Z Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. $(2)$ 146 (1997) 53

[12] W Rossmann, Lie groups: An introduction through linear groups, Oxford Graduate Texts in Math. 5, Oxford Univ. Press (2002)

[13] G P Scott, Finitely generated $3$–manifold groups are finitely presented, J. London Math. Soc. $(2)$ 6 (1973) 437

[14] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[15] J R Stallings, A topological proof of Grushko's theorem on free products, Math. Z. 90 (1965) 1

[16] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551

[17] J R Stallings, Foldings of $G$–trees, from: "Arboreal group theory (Berkeley, CA, 1988)" (editor R C Alperin), Math. Sci. Res. Inst. Publ. 19, Springer (1991) 355

[18] G A Swarup, Delzant's variation on Scott complexity

[19] H Wilton, Solutions to Bestvina Feighn's exercises on limit groups, from: "Geometric and cohomological methods in group theory" (editors M R Bridson, P H Kropholler, I J Leary), London Math. Soc. Lecture Note Ser. 358, Cambridge Univ. Press (2009) 30

Cité par Sources :