Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Motivated by string-theoretic arguments Manschot, Pioline and Sen discovered a new remarkable formula for the Poincaré polynomial of a smooth compact moduli space of stable quiver representations which effectively reduces to the abelian case (ie thin dimension vectors). We first prove a motivic generalization of this formula, valid for arbitrary quivers, dimension vectors and stabilities. In the case of complete bipartite quivers we use the refined GW/Kronecker correspondence between Euler characteristics of quiver moduli and Gromov–Witten invariants to identify the MPS formula for Euler characteristics with a standard degeneration formula in Gromov–Witten theory. Finally we combine the MPS formula with localization techniques, obtaining a new formula for quiver Euler characteristics as a sum over trees, and constructing many examples of explicit correspondences between quiver representations and tropical curves.
Reineke, Markus 1 ; Stoppa, Jacopo 2 ; Weist, Thorsten 3
@article{GT_2012_16_4_a5, author = {Reineke, Markus and Stoppa, Jacopo and Weist, Thorsten}, title = {MPS degeneration formula for quiver moduli and refined {GW/Kronecker} correspondence}, journal = {Geometry & topology}, pages = {2097--2134}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2012}, doi = {10.2140/gt.2012.16.2097}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2097/} }
TY - JOUR AU - Reineke, Markus AU - Stoppa, Jacopo AU - Weist, Thorsten TI - MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence JO - Geometry & topology PY - 2012 SP - 2097 EP - 2134 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2097/ DO - 10.2140/gt.2012.16.2097 ID - GT_2012_16_4_a5 ER -
%0 Journal Article %A Reineke, Markus %A Stoppa, Jacopo %A Weist, Thorsten %T MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence %J Geometry & topology %D 2012 %P 2097-2134 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2097/ %R 10.2140/gt.2012.16.2097 %F GT_2012_16_4_a5
Reineke, Markus; Stoppa, Jacopo; Weist, Thorsten. MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence. Geometry & topology, Tome 16 (2012) no. 4, pp. 2097-2134. doi : 10.2140/gt.2012.16.2097. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2097/
[1] An introduction to motivic Hall algebras, Adv. Math. 229 (2012) 102
,[2] Smooth models of quiver moduli, Math. Z. 262 (2009) 817
, ,[3] The numbers of tropical plane curves through points in general position, J. Reine Angew. Math. 602 (2007) 155
, ,[4] Quivers, curves, and the tropical vertex, Port. Math. 67 (2010) 211
, ,[5] The tropical vertex, Duke Math. J. 153 (2010) 297
, , ,[6] Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45
, ,[7] Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515
,[8] Affine structures and non-Archimedean analytic spaces, from: "The unity of mathematics" (editors P Etingof, V Retakh, I Singer), Progr. Math. 244, Birkhäuser (2006) 321
, ,[9] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau $3$–folds, Invent. Math. 145 (2001) 151
, ,[10] A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199
,[11] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995)
,[12] BPS invariants of semi-stable sheaves on rational surfaces
,[13] Wall crossing from Boltzmann black hole halos, J. High Energy Phys. (2011) 059, 73
, , ,[14] Enumerative tropical algebraic geometry in $\mathbb R^2$, J. Amer. Math. Soc. 18 (2005) 313
,[15] The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003) 349
,[16] Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu 9 (2010) 653
,[17] Refined GW/Kronecker correspondence
, ,[18] Universal covers and the GW/Kronecker correspondence, Commun. Number Theory Phys. 5 (2011) 353
,[19] Localization in quiver moduli spaces
,Cité par Sources :