Definable triangulations with regularity conditions
Geometry & topology, Tome 16 (2012) no. 4, pp. 2067-2095.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that every definable in an o-minimal structure set has a definable triangulation which is locally Lipschitz and weakly bi-Lipschitz on the natural simplicial stratification of a simplicial complex. We also distinguish a class T of regularity conditions and give a universal construction of a definable triangulation with a T condition of a definable set. This class includes the Whitney (B) and the Verdier conditions.

DOI : 10.2140/gt.2012.16.2067
Classification : 14P05, 14P10, 32B20, 32B25
Keywords: Weakly Lipschitz mapping, definable triangulation, Whitney (B) condition, Verdier condition

Czapla, Małgorzata 1

1 Uniwersytet Jagielloński, Instytut Matematyki, ul. Łojasiewicza 6, 30-348 Kraków, Poland
@article{GT_2012_16_4_a4,
     author = {Czapla, Ma{\l}gorzata},
     title = {Definable triangulations with regularity conditions},
     journal = {Geometry & topology},
     pages = {2067--2095},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2012},
     doi = {10.2140/gt.2012.16.2067},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/}
}
TY  - JOUR
AU  - Czapla, Małgorzata
TI  - Definable triangulations with regularity conditions
JO  - Geometry & topology
PY  - 2012
SP  - 2067
EP  - 2095
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/
DO  - 10.2140/gt.2012.16.2067
ID  - GT_2012_16_4_a4
ER  - 
%0 Journal Article
%A Czapla, Małgorzata
%T Definable triangulations with regularity conditions
%J Geometry & topology
%D 2012
%P 2067-2095
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/
%R 10.2140/gt.2012.16.2067
%F GT_2012_16_4_a4
Czapla, Małgorzata. Definable triangulations with regularity conditions. Geometry & topology, Tome 16 (2012) no. 4, pp. 2067-2095. doi : 10.2140/gt.2012.16.2067. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/

[1] H Brodersen, D Trotman, Whitney (b)–regularity is weaker than Kuo's ratio test for real algebraic stratifications, Math. Scand. 45 (1979) 27

[2] M Coste, An introduction to o-minimal geometry, doctoral thesis, Pisa (2000)

[3] M Coste, M Reguiat, Trivialités en famille, from: "Real algebraic geometry (Rennes, 1991)", Lecture Notes in Math. 1524, Springer (1992) 193

[4] M Czapla, Invariance of regularity conditions under definable, locally Lipschitz, weakly bi–Lipschitz mappings, Ann. Polon. Math. 97 (2010) 1

[5] J Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press (1960)

[6] J Dugundji, A Granas, Fixed point theory, vol. I, Polish Scientific Publishers (1982)

[7] R Engelking, K Sieklucki, Geometria i topologia. Część II: Topologia, Biblioteka Matematyczna 54, Państwowe Wydawnictwo Naukowe (PWN) (1980) 388

[8] R M Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976/77) 207

[9] H Hironaka, Subanalytic sets, from: "Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki", Kinokuniya (1973) 453

[10] H Hironaka, Triangulations of algebraic sets, from: "Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974)", Amer. Math. Soc. (1975) 165

[11] T L Loi, Whitney stratification of sets definable in the structure $\mathbb{R}_{\exp}$, from: "Singularities and differential equations (Warsaw, 1993)", Banach Center Publ. 33, Polish Acad. Sci. (1996) 401

[12] T L Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998) 347

[13] S Łojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964) 449

[14] S Łojasiewicz, Ensembles semi-analytiques, preprint, IHES, Bur-sur-Yvette (1965)

[15] S Łojasiewicz, Stratifications et triangulations sous-analytiques, from: "Geometry Seminars, 1986 (Italian) (Bologna, 1986)", Univ. Stud. Bologna (1988) 83

[16] S Łojasiewicz, J Stasica, K Wachta, Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. Math. 34 (1986) 531

[17] M Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser (1997)

[18] M Shiota, Whitney triangulations of semialgebraic sets, Ann. Polon. Math. 87 (2005) 237

[19] G Valette, Lipschitz triangulations, Illinois J. Math. 49 (2005) 953

[20] L Van Den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series 248, Cambridge Univ. Press (1998)

[21] L Van Den Dries, C Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996) 497

[22] H Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965) 496

Cité par Sources :