Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that every definable in an o-minimal structure set has a definable triangulation which is locally Lipschitz and weakly bi-Lipschitz on the natural simplicial stratification of a simplicial complex. We also distinguish a class of regularity conditions and give a universal construction of a definable triangulation with a condition of a definable set. This class includes the Whitney (B) and the Verdier conditions.
Czapla, Małgorzata 1
@article{GT_2012_16_4_a4, author = {Czapla, Ma{\l}gorzata}, title = {Definable triangulations with regularity conditions}, journal = {Geometry & topology}, pages = {2067--2095}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2012}, doi = {10.2140/gt.2012.16.2067}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/} }
Czapla, Małgorzata. Definable triangulations with regularity conditions. Geometry & topology, Tome 16 (2012) no. 4, pp. 2067-2095. doi : 10.2140/gt.2012.16.2067. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2067/
[1] Whitney (b)–regularity is weaker than Kuo's ratio test for real algebraic stratifications, Math. Scand. 45 (1979) 27
, ,[2] An introduction to o-minimal geometry, doctoral thesis, Pisa (2000)
,[3] Trivialités en famille, from: "Real algebraic geometry (Rennes, 1991)", Lecture Notes in Math. 1524, Springer (1992) 193
, ,[4] Invariance of regularity conditions under definable, locally Lipschitz, weakly bi–Lipschitz mappings, Ann. Polon. Math. 97 (2010) 1
,[5] Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press (1960)
,[6] Fixed point theory, vol. I, Polish Scientific Publishers (1982)
, ,[7] Geometria i topologia. Część II: Topologia, Biblioteka Matematyczna 54, Państwowe Wydawnictwo Naukowe (PWN) (1980) 388
, ,[8] Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976/77) 207
,[9] Subanalytic sets, from: "Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki", Kinokuniya (1973) 453
,[10] Triangulations of algebraic sets, from: "Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974)", Amer. Math. Soc. (1975) 165
,[11] Whitney stratification of sets definable in the structure $\mathbb{R}_{\exp}$, from: "Singularities and differential equations (Warsaw, 1993)", Banach Center Publ. 33, Polish Acad. Sci. (1996) 401
,[12] Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998) 347
,[13] Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964) 449
,[14] Ensembles semi-analytiques, preprint, IHES, Bur-sur-Yvette (1965)
,[15] Stratifications et triangulations sous-analytiques, from: "Geometry Seminars, 1986 (Italian) (Bologna, 1986)", Univ. Stud. Bologna (1988) 83
,[16] Stratifications sous-analytiques. Condition de Verdier, Bull. Polish Acad. Sci. Math. 34 (1986) 531
, , ,[17] Geometry of subanalytic and semialgebraic sets, Progress in Mathematics 150, Birkhäuser (1997)
,[18] Whitney triangulations of semialgebraic sets, Ann. Polon. Math. 87 (2005) 237
,[19] Lipschitz triangulations, Illinois J. Math. 49 (2005) 953
,[20] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series 248, Cambridge Univ. Press (1998)
,[21] Geometric categories and o-minimal structures, Duke Math. J. 84 (1996) 497
, ,[22] Tangents to an analytic variety, Ann. of Math. 81 (1965) 496
,Cité par Sources :