Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a morphism of DM stacks of positive virtual relative dimension and let . We give sufficient conditions for to be a multiple of . We show an analogue of the conservation of number for virtually smooth families. We show implications to Gromov–Witten invariants and give a new proof of a theorem of Marian, Oprea and Pandharipande which compares the virtual classes of moduli spaces of stable maps and moduli spaces of stable quotients.
Manolache, Cristina 1
@article{GT_2012_16_4_a2, author = {Manolache, Cristina}, title = {Virtual push-forwards}, journal = {Geometry & topology}, pages = {2003--2036}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2012}, doi = {10.2140/gt.2012.16.2003}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2003/} }
Manolache, Cristina. Virtual push-forwards. Geometry & topology, Tome 16 (2012) no. 4, pp. 2003-2036. doi : 10.2140/gt.2012.16.2003. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.2003/
[1] Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601
,[2] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[3] Givental's Lagrangian cone and $S^1$–equivariant Gromov–Witten theory, Math. Res. Lett. 15 (2008) 15
,[4] Higher genus Gromov–Witten invariants as genus zero invariants of symmetric products, Ann. of Math. 164 (2006) 561
,[5] The Stacks Project
,[6] Riemann–Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010) 83
, ,[7] Intersection theory, Ergeb. Math. Grenzgeb. 2, Springer (1984)
,[8] Gromov–Witten invariants of hypersurfaces, habilitation thesis, University of Kaiserslautern (2003)
,[9] Some functoriality properties of Gromov–Witten invariants, personal communication
,[10] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127
, , ,[11] The connectedness of the moduli space of maps to homogeneous spaces, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ., River Edge, NJ (2001) 187
, ,[12] Intersection theory on Deligne–Mumford stacks, manuscript
,[13] Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495
,[14] Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol. 13 (2009) 1
,[15] Champs algébriques, Ergeb. Math. Grenzgeb. 39, Springer (2000)
, ,[16] Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic 4–manifolds (Irvine, CA, 1996)", First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA (1998) 47
, ,[17] Remarks on the stack of coherent algebras, Int. Math. Res. Not. 2006 (2006) 12
,[18] Virtual pull-backs, J. Algebraic Geom. 21 (2012) 201
,[19] The moduli space of stable quotients, Geom. Topol. 15 (2011) 1651
, , ,[20] Sheaves on Artin stacks, J. Reine Angew. Math. 603 (2007) 55
,[21] Stable maps and Quot schemes, Invent. Math. 152 (2003) 625
, ,[22] Moduli spaces of stable quotients and wall-crossing phenomena, Compos. Math. 147 (2011) 1479
,[23] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613
,Cité par Sources :