Homological mirror symmetry for the quintic 3–fold
Geometry & topology, Tome 16 (2012) no. 4, pp. 1967-2001.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove homological mirror symmetry for the quintic Calabi–Yau 3–fold. The proof follows that for the quartic surface by Seidel closely, and uses a result of Sheridan. In contrast to Sheridan’s approach, our proof gives the compatibility of homological mirror symmetry for the projective space and its Calabi–Yau hypersurface.

DOI : 10.2140/gt.2012.16.1967
Classification : 53D37, 14J33
Keywords: homological mirror symmetry

Nohara, Yuichi 1 ; Ueda, Kazushi 2

1 Faculty of Education, Kagawa University, 1-1 Saiwai-cho, Takamatsu 760-8522, Japan
2 Department of Mathematics, Osaka University, Graduate School of Science, Machikaneyama 1-1, Toyonaka 560-0043, Japan
@article{GT_2012_16_4_a1,
     author = {Nohara, Yuichi and Ueda, Kazushi},
     title = {Homological mirror symmetry for the quintic 3{\textendash}fold},
     journal = {Geometry & topology},
     pages = {1967--2001},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2012},
     doi = {10.2140/gt.2012.16.1967},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1967/}
}
TY  - JOUR
AU  - Nohara, Yuichi
AU  - Ueda, Kazushi
TI  - Homological mirror symmetry for the quintic 3–fold
JO  - Geometry & topology
PY  - 2012
SP  - 1967
EP  - 2001
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1967/
DO  - 10.2140/gt.2012.16.1967
ID  - GT_2012_16_4_a1
ER  - 
%0 Journal Article
%A Nohara, Yuichi
%A Ueda, Kazushi
%T Homological mirror symmetry for the quintic 3–fold
%J Geometry & topology
%D 2012
%P 1967-2001
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1967/
%R 10.2140/gt.2012.16.1967
%F GT_2012_16_4_a1
Nohara, Yuichi; Ueda, Kazushi. Homological mirror symmetry for the quintic 3–fold. Geometry & topology, Tome 16 (2012) no. 4, pp. 1967-2001. doi : 10.2140/gt.2012.16.1967. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1967/

[1] M Abouzaid, I Smith, Homological mirror symmetry for the 4–torus, Duke Math. J. 152 (2010) 373

[2] M Akaho, D Joyce, Immersed Lagrangian Floer theory, J. Differential Geom. 86 (2010) 381

[3] A A Beĭlinson, Coherent sheaves on $\mathbb{P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68

[4] C H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803

[5] K Fukaya, Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom. 11 (2002) 393

[6] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction, AMS/IP Studies in Advanced Mathematics 46, American Mathematical Society (2009)

[7] M Futaki, K Ueda, Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space

[8] L Katzarkov, Birational geometry and homological mirror symmetry, from: "Real and complex singularities", World Sci. Publ., Hackensack, NJ (2007) 176

[9] M Kontsevich, Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 120

[10] M Kontsevich, Lectures at ENS Paris, Spring 1998 (1998)

[11] M Kontsevich, Y Soibelman, Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)", World Sci. Publ., River Edge, NJ (2001) 203

[12] Y G Oh, Seidel's long exact sequence on Calabi–Yau manifolds

[13] A Polishchuk, Massey and Fukaya products on elliptic curves, Adv. Theor. Math. Phys. 4 (2000) 1187

[14] A Polishchuk, E Zaslow, Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2 (1998) 443

[15] W D Ruan, Lagrangian torus fibration of quintic Calabi–Yau hypersurfaces II: Technical results on gradient flow construction, J. Symplectic Geom. 1 (2002) 435

[16] P Seidel, Homological mirror symmetry for the quartic surface

[17] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003

[18] P Seidel, Exact Lagrangian submanifolds in $T^*S^n$ and the graded Kronecker quiver, from: "Different faces of geometry", Int. Math. Ser. (NY) 3 (2004) 349

[19] P Seidel, $A_\infty$–subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008) 83

[20] P Seidel, Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (2008)

[21] P Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Comm. Math. Phys. 297 (2010) 515

[22] N Sheridan, Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space

[23] N Sheridan, On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011) 271

[24] A Takahashi, Weighted projective lines associated to regular systems of weights of dual type, from: "New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008)", Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 371

Cité par Sources :