The Novikov conjecture and geometry of Banach spaces
Geometry & topology, Tome 16 (2012) no. 3, pp. 1859-1880.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we prove the strong Novikov conjecture for groups coarsely embeddable into Banach spaces satisfying a geometric condition called Property (H).

DOI : 10.2140/gt.2012.16.1859
Classification : 19K35, 19K56, 46L80, 57R55
Keywords: Novikov conjecture, Banach space

Kasparov, Gennadi 1 ; Yu, Guoliang 2

1 Department of Mathematics, 1326 Stevenson Center, Vanderbilt University, Nashville TN 37240, USA
2 Department of Mathematics, Texas A&M University, College Station TX 77843, USA, Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
@article{GT_2012_16_3_a13,
     author = {Kasparov, Gennadi and Yu, Guoliang},
     title = {The {Novikov} conjecture and geometry of {Banach} spaces},
     journal = {Geometry & topology},
     pages = {1859--1880},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1859},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/}
}
TY  - JOUR
AU  - Kasparov, Gennadi
AU  - Yu, Guoliang
TI  - The Novikov conjecture and geometry of Banach spaces
JO  - Geometry & topology
PY  - 2012
SP  - 1859
EP  - 1880
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/
DO  - 10.2140/gt.2012.16.1859
ID  - GT_2012_16_3_a13
ER  - 
%0 Journal Article
%A Kasparov, Gennadi
%A Yu, Guoliang
%T The Novikov conjecture and geometry of Banach spaces
%J Geometry & topology
%D 2012
%P 1859-1880
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/
%R 10.2140/gt.2012.16.1859
%F GT_2012_16_3_a13
Kasparov, Gennadi; Yu, Guoliang. The Novikov conjecture and geometry of Banach spaces. Geometry & topology, Tome 16 (2012) no. 3, pp. 1859-1880. doi : 10.2140/gt.2012.16.1859. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/

[1] M F Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. 19 (1968) 113

[2] P Baum, A Connes, N Higson, Classifying space for proper actions and $K$–theory of group $C^{*}$–algebras, from: "$C^{*}$–algebras: 1943–1993 (San Antonio, TX, 1993)", Contemp. Math. 167, Amer. Math. Soc. (1994) 240

[3] Y Benyamini, J Lindenstrauss, Geometric nonlinear functional analysis Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society (2000)

[4] N Brown, E Guentner, Uniform embeddings of bounded geometry spaces into reflexive Banach space, Proc. Amer. Math. Soc. 133 (2005) 2045

[5] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[6] E Guentner, N Higson, J Trout, Equivariant $E$–theory for $C^{*}$–algebras, Mem. Amer. Math. Soc. 148 (2000)

[7] N Higson, Bivariant $K$–theory and the Novikov conjecture, Geom. Funct. Anal. 10 (2000) 563

[8] N Higson, G Kasparov, J Trout, A Bott periodicity theorem for infinite-dimensional Euclidean space, Adv. Math. 135 (1998) 1

[9] W B Johnson, N L Randrianarivony, $l_p (p\gt 2)$ does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006) 1045

[10] G Kasparov, G Skandalis, Groups acting properly on “bolic” spaces and the Novikov conjecture, Ann. of Math. 158 (2003) 165

[11] M Mendel, A Naor, Metric cotype, Ann. of Math. 168 (2008) 247

[12] J Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993)

[13] G Skandalis, J L Tu, G Yu, The coarse Baum–Connes conjecture and groupoids, Topology 41 (2002) 807

[14] G Yu, Localization algebras and the coarse Baum–Connes conjecture, $K$–Theory 11 (1997) 307

[15] G Yu, The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000) 201

Cité par Sources :