Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper, we prove the strong Novikov conjecture for groups coarsely embeddable into Banach spaces satisfying a geometric condition called Property (H).
Kasparov, Gennadi 1 ; Yu, Guoliang 2
@article{GT_2012_16_3_a13, author = {Kasparov, Gennadi and Yu, Guoliang}, title = {The {Novikov} conjecture and geometry of {Banach} spaces}, journal = {Geometry & topology}, pages = {1859--1880}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1859}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/} }
TY - JOUR AU - Kasparov, Gennadi AU - Yu, Guoliang TI - The Novikov conjecture and geometry of Banach spaces JO - Geometry & topology PY - 2012 SP - 1859 EP - 1880 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/ DO - 10.2140/gt.2012.16.1859 ID - GT_2012_16_3_a13 ER -
Kasparov, Gennadi; Yu, Guoliang. The Novikov conjecture and geometry of Banach spaces. Geometry & topology, Tome 16 (2012) no. 3, pp. 1859-1880. doi : 10.2140/gt.2012.16.1859. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1859/
[1] Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. 19 (1968) 113
,[2] Classifying space for proper actions and $K$–theory of group $C^{*}$–algebras, from: "$C^{*}$–algebras: 1943–1993 (San Antonio, TX, 1993)", Contemp. Math. 167, Amer. Math. Soc. (1994) 240
, , ,[3] Geometric nonlinear functional analysis Vol. 1, American Mathematical Society Colloquium Publications 48, American Mathematical Society (2000)
, ,[4] Uniform embeddings of bounded geometry spaces into reflexive Banach space, Proc. Amer. Math. Soc. 133 (2005) 2045
, ,[5] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[6] Equivariant $E$–theory for $C^{*}$–algebras, Mem. Amer. Math. Soc. 148 (2000)
, , ,[7] Bivariant $K$–theory and the Novikov conjecture, Geom. Funct. Anal. 10 (2000) 563
,[8] A Bott periodicity theorem for infinite-dimensional Euclidean space, Adv. Math. 135 (1998) 1
, , ,[9] $l_p (p\gt 2)$ does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006) 1045
, ,[10] Groups acting properly on “bolic” spaces and the Novikov conjecture, Ann. of Math. 158 (2003) 165
, ,[11] Metric cotype, Ann. of Math. 168 (2008) 247
, ,[12] Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993)
,[13] The coarse Baum–Connes conjecture and groupoids, Topology 41 (2002) 807
, , ,[14] Localization algebras and the coarse Baum–Connes conjecture, $K$–Theory 11 (1997) 307
,[15] The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000) 201
,Cité par Sources :