Rigidity of certain solvable actions on the sphere
Geometry & topology, Tome 16 (2012) no. 3, pp. 1835-1857.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

An analog of the Baumslag–Solitar group BS(1,k) naturally acts on the sphere by conformal transformations. The action is not locally rigid in higher dimensions, but exhibits a weak form of local rigidity. More precisely, any perturbation preserves a smooth conformal structure.

DOI : 10.2140/gt.2012.16.1835
Classification : 37C85
Keywords: group actions, local rigidity

Asaoka, Masayuki 1

1 Department of Mathematics, Kyoto University, Kita-shirakawa Oiwake-cho, Sakyo, Kyoto 606-8502, Japan
@article{GT_2012_16_3_a12,
     author = {Asaoka, Masayuki},
     title = {Rigidity of certain solvable actions on the sphere},
     journal = {Geometry & topology},
     pages = {1835--1857},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1835},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1835/}
}
TY  - JOUR
AU  - Asaoka, Masayuki
TI  - Rigidity of certain solvable actions on the sphere
JO  - Geometry & topology
PY  - 2012
SP  - 1835
EP  - 1857
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1835/
DO  - 10.2140/gt.2012.16.1835
ID  - GT_2012_16_3_a12
ER  - 
%0 Journal Article
%A Asaoka, Masayuki
%T Rigidity of certain solvable actions on the sphere
%J Geometry & topology
%D 2012
%P 1835-1857
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1835/
%R 10.2140/gt.2012.16.1835
%F GT_2012_16_3_a12
Asaoka, Masayuki. Rigidity of certain solvable actions on the sphere. Geometry & topology, Tome 16 (2012) no. 3, pp. 1835-1857. doi : 10.2140/gt.2012.16.1835. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1835/

[1] E J Benveniste, Rigidity of isometric lattice actions on compact Riemannian manifolds, Geom. Funct. Anal. 10 (2000) 516

[2] L Burslem, A Wilkinson, Global rigidity of solvable group actions on $S^1$, Geom. Topol. 8 (2004) 877

[3] J Cantwell, L Conlon, An interesting class of $C^1$ foliations, Topology Appl. 126 (2002) 281

[4] D Damjanović, A Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\mathbb{Z}^k$ actions on the torus, Ann. of Math. 172 (2010) 1805

[5] D Fisher, First cohomology and local rigidity of group actions, to appear in Ann. of Math. (2)

[6] D Fisher, Local rigidity of group actions: past, present, future, from: "Dynamics, ergodic theory, and geometry" (editor B Hasselblatt), Math. Sci. Res. Inst. Publ. 54, Cambridge Univ. Press (2007) 45

[7] D Fisher, G Margulis, Almost isometric actions, property (T), and local rigidity, Invent. Math. 162 (2005) 19

[8] D Fisher, G Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. 170 (2009) 67

[9] N Guelman, I Liousse, Actions of Baumslag–Solitar groups on surfaces

[10] N Guelman, I Liousse, $C^1$–actions of Baumslag–Solitar groups on $S^ 1$, Algebr. Geom. Topol. 11 (2011) 1701

[11] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge Univ. Press (1995)

[12] A Katok, J Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991) 203

[13] A Katok, R J Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997) 292

[14] A E Mccarthy, Rigidity of trivial actions of abelian-by-cyclic groups, Proc. Amer. Math. Soc. 138 (2010) 1395

[15] A Navas, Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite, Bull. Braz. Math. Soc. 35 (2004) 13

[16] V Niţică, A Török, Local rigidity of certain partially hyperbolic actions of product type, Ergodic Theory Dynam. Systems 21 (2001) 1213

[17] C Rivas, On spaces of Conradian group orderings, J. Group Theory 13 (2010) 337

[18] A Weil, Remarks on the cohomology of groups, Ann. of Math. 80 (1964) 149

[19] R J Zimmer, Lattices in semisimple groups and distal geometric structures, Invent. Math. 80 (1985) 123

Cité par Sources :