SO(3)–Donaldson invariants of ℂP2 and mock theta functions
Geometry & topology, Tome 16 (2012) no. 3, pp. 1767-1833.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the Moore–Witten regularized u–plane integral on P2, and we confirm the conjecture that it is the generating function for the SO(3)–Donaldson invariants of P2. We also derive generating functions for the SO(3)–Donaldson invariants with 2Nf massless monopoles using the geometry of certain rational elliptic surfaces (Nf {0,2,3,4}), and we show that the partition function for Nf = 4 is nearly modular. Our results rely heavily on the theory of mock theta functions and harmonic Maass forms (for example, see Ono [Current developments in mathematics, 2008, Int. Press, Somerville, MA (2009) 347–454]).

DOI : 10.2140/gt.2012.16.1767
Classification : 57R57
Keywords: Donaldson invariant, mock theta function

Malmendier, Andreas 1 ; Ono, Ken 2

1 Department of Mathematics and Statistics, Colby College, Waterville MN 04901, USA
2 Mathematics and Computer Science, Emory University, Atlanta GA 30322, USA
@article{GT_2012_16_3_a11,
     author = {Malmendier, Andreas and Ono, Ken},
     title = {SO(3){\textendash}Donaldson invariants of {\ensuremath{\mathbb{C}}P2} and mock theta functions},
     journal = {Geometry & topology},
     pages = {1767--1833},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1767},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1767/}
}
TY  - JOUR
AU  - Malmendier, Andreas
AU  - Ono, Ken
TI  - SO(3)–Donaldson invariants of ℂP2 and mock theta functions
JO  - Geometry & topology
PY  - 2012
SP  - 1767
EP  - 1833
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1767/
DO  - 10.2140/gt.2012.16.1767
ID  - GT_2012_16_3_a11
ER  - 
%0 Journal Article
%A Malmendier, Andreas
%A Ono, Ken
%T SO(3)–Donaldson invariants of ℂP2 and mock theta functions
%J Geometry & topology
%D 2012
%P 1767-1833
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1767/
%R 10.2140/gt.2012.16.1767
%F GT_2012_16_3_a11
Malmendier, Andreas; Ono, Ken. SO(3)–Donaldson invariants of ℂP2 and mock theta functions. Geometry & topology, Tome 16 (2012) no. 3, pp. 1767-1833. doi : 10.2140/gt.2012.16.1767. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1767/

[1] L Álvarez-Gaumé, M Mariño, F Zamora, Softly broken $N=2$ QCD with massive quark hypermultiplets, I, Internat. J. Modern Phys. A 13 (1998) 403

[2] G E Andrews, Mordell integrals and Ramanujan's “lost” notebook, from: "Analytic number theory (Philadelphia, PA, 1980)" (editor M I Knopp), Lecture Notes in Math. 899, Springer (1981) 10

[3] M F Atiyah, The logarithm of the Dedekind $\eta$–function, Math. Ann. 278 (1987) 335

[4] M F Atiyah, I M Singer, Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 2597

[5] K Bringmann, K Ono, The $f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006) 243

[6] K Bringmann, K Ono, Dyson's ranks and Maass forms, Ann. of Math. 171 (2010) 419

[7] K Bringmann, K Ono, R C Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21 (2008) 1085

[8] J H Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Math. 1780, Springer (2002)

[9] J H Bruinier, J Funke, On two geometric theta lifts, Duke Math. J. 125 (2004) 45

[10] J H Bruinier, K Ono, Heegner divisors, $L$–functions and harmonic weak Maass forms, Ann. of Math. 172 (2010) 2135

[11] J H Bruinier, G Van Der Geer, G Harder, D Zagier, The 1-2-3 of modular forms, (K Ranestad, editor), Universitext, Springer (2008)

[12] J H Bruinier, T Yang, Faltings heights of CM cycles and derivatives of $L$–functions, Invent. Math. 177 (2009) 631

[13] Y Choie, M H Lee, Rankin–Cohen brackets on pseudodifferential operators, J. Math. Anal. Appl. 326 (2007) 882

[14] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)

[15] F J Dyson, A walk through Ramanujan's garden, from: "Ramanujan revisited (Urbana-Champaign, IL, 1987)" (editors G E Andrews, R A Askey, B C Berndt, K G Ramanathan, R A Rankin), Academic Press (1988) 7

[16] G Ellingsrud, L Göttsche, Wall-crossing formulas, the Bott residue formula and the Donaldson invariants of rational surfaces, Quart. J. Math. Oxford Ser. 49 (1998) 307

[17] D S Freed, K K Uhlenbeck, Instantons and four-manifolds, MSRI Publ. 1, Springer (1991)

[18] A L Gorodenzev, Top Chern classes of universal bundles on the complex projective plane and correlation functions of asymptotically free SYM $N=2$ QFT, J. Math. Sci. $($New York$)$ 106 (2001) 3240

[19] L Göttsche, Modular forms and Donaldson invariants for $4$–manifolds with $b_{+}=1$, J. Amer. Math. Soc. 9 (1996) 827

[20] L Göttsche, Donaldson invariants in algebraic geometry, from: "School on Algebraic Geometry (Trieste, 1999)" (editor L Göttsche), ICTP Lect. Notes 1, Abdus Salam Int. Cent. Theoret. Phys. (2000) 101

[21] L Göttsche, H Nakajima, K Yoshioka, Instanton counting and Donaldson invariants, J. Differential Geom. 80 (2008) 343

[22] L Göttsche, D Zagier, Jacobi forms and the structure of Donaldson invariants for $4$–manifolds with $b_+=1$, Selecta Math. 4 (1998) 69

[23] F Hirzebruch, D Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math. 36 (1976) 57

[24] A A Klyachko, Moduli of vector bundles and numbers of classes, Funktsional. Anal. i Prilozhen. 25 (1991) 81

[25] D Kotschick, $\mathrm{SO}(3)$–invariants for $4$–manifolds with $b^ +_2=1$, Proc. London Math. Soc. 63 (1991) 426

[26] D Kotschick, P Lisca, Instanton invariants of $\mathbf C\mathrm{P}^2$ via topology, Math. Ann. 303 (1995) 345

[27] D Kotschick, J W Morgan, $\mathrm{SO}(3)$–invariants for $4$–manifolds with $b^ +_2=1$. II, J. Differential Geom. 39 (1994) 433

[28] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573

[29] J M F Labastida, C Lozano, Duality in twisted $\mathscr{N}=4$ supersymmetric gauge theories in four dimensions, Nuclear Phys. B 537 (1999) 203

[30] T G Leness, Degeneracy loci of families of Dirac operators, Trans. Amer. Math. Soc. 364 (2012) 5995

[31] A Losev, N Nekrasov, S Shatashvili, Issues in topological gauge theory, Nuclear Phys. B 534 (1998) 549

[32] A Malmendier, |Expressions for the generating function of the Donaldson invariants for $\mathbb{C}\mathrm{P}^2$, PhD thesis, Massachusetts Insitute of Technology (2007)

[33] A Malmendier, The signature of the Seiberg–Witten surface, from: "Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics" (editors T Mrowka, S T Yau), Surv. Differ. Geom. 15, Int. Press (2011) 255

[34] M Mariño, G Moore, Integrating over the Coulomb branch in $\mathscr{N}=2$ gauge theory, Nuclear Phys. B Proc. Suppl. 68 (1998) 336

[35] R Miranda, Persson's list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990) 191

[36] R Miranda, An overview of algebraic surfaces, from: "Algebraic geometry (Ankara, 1995)" (editor S Sertöz), Lecture Notes in Pure and Appl. Math. 193, Dekker (1997) 157

[37] G Moore, E Witten, Integration over the $u$–plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997) 298

[38] W Nahm, On electric-magnetic duality, Nuclear Phys. B Proc. Suppl. 58 (1997) 91

[39] K Oguiso, T Shioda, The Mordell–Weil lattice of a rational elliptic surface, Comment. Math. Univ. St. Paul. 40 (1991) 83

[40] K Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R P Stanley, S T Yau), Int. Press (2009) 347

[41] U Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990) 1

[42] N Seiberg, E Witten, Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory, Nuclear Phys. B 426 (1994) 19

[43] N Seiberg, E Witten, Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD, Nuclear Phys. B 431 (1994) 484

[44] Y Shimizu, Seiberg–Witten integrable systems and periods of rational elliptic surfaces, from: "Primes and knots" (editors T Kohno, M Morishita), Contemp. Math. 416, Amer. Math. Soc. (2006) 237

[45] G Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973) 440

[46] T Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972) 20

[47] P F Stiller, Elliptic curves over function fields and the Picard number, Amer. J. Math. 102 (1980) 565

[48] P F Stiller, Monodromy and invariants of elliptic surfaces, Pacific J. Math. 92 (1981) 433

[49] S A Strømme, Ample divisors on fine moduli spaces on the projective plane, Math. Z. 187 (1984) 405

[50] C Vafa, E Witten, A strong coupling test of $S$–duality, Nuclear Phys. B 431 (1994) 3

[51] E Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988) 353

[52] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

[53] E Witten, On $S$–duality in abelian gauge theory, Selecta Math. 1 (1995) 383

[54] K Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on $\mathbf P^2$, J. Reine Angew. Math. 453 (1994) 193

[55] D Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono–Bringmann), from: "Séminaire Bourbaki. Vol. 2007/2008", Astérisque 326, Soc. Math. France (2009) 143

[56] S P Zwegers, Mock theta functions, PhD thesis, Universiteit Utrecht (2002)

Cité par Sources :