Towards representation stability for the second homology of the Torelli group
Geometry & topology, Tome 16 (2012) no. 3, pp. 1725-1765.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show for g 7 that the second homology group of the Torelli group, H2(g,1; ), is generated as an Sp(2g, )–module by the image of H2(6,1; ) under the stabilization map. In the process we also show that the quotient B(Fg,i;i)g,i by the Torelli group of the complex of arcs with identity permutation is (g2)–connected for i = 1,2.

DOI : 10.2140/gt.2012.16.1725
Classification : 20C12, 20J06
Keywords: representation stability, Torelli group

Boldsen, Søren K 1 ; Dollerup, Mia Hauge 2

1 Mathematical Institute, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
2 Department of Mathematics, Aarhus University, Klokkerfaldet 109, DK-8210 Aarhus, Denmark
@article{GT_2012_16_3_a10,
     author = {Boldsen, S{\o}ren~K and Dollerup, Mia Hauge},
     title = {Towards representation stability for the second homology of the {Torelli} group},
     journal = {Geometry & topology},
     pages = {1725--1765},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1725},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/}
}
TY  - JOUR
AU  - Boldsen, Søren K
AU  - Dollerup, Mia Hauge
TI  - Towards representation stability for the second homology of the Torelli group
JO  - Geometry & topology
PY  - 2012
SP  - 1725
EP  - 1765
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/
DO  - 10.2140/gt.2012.16.1725
ID  - GT_2012_16_3_a10
ER  - 
%0 Journal Article
%A Boldsen, Søren K
%A Dollerup, Mia Hauge
%T Towards representation stability for the second homology of the Torelli group
%J Geometry & topology
%D 2012
%P 1725-1765
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/
%R 10.2140/gt.2012.16.1725
%F GT_2012_16_3_a10
Boldsen, Søren K; Dollerup, Mia Hauge. Towards representation stability for the second homology of the Torelli group. Geometry & topology, Tome 16 (2012) no. 3, pp. 1725-1765. doi : 10.2140/gt.2012.16.1725. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/

[1] A Borel, Stable real cohomology of arithmetic groups II, from: "Manifolds and Lie groups (Notre Dame, IN, 1980)" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, Birkhäuser (1981) 21

[2] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)

[3] T Church, B Farb, Representation theory and homological stability

[4] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215

[5] N V Ivanov, Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49, 255

[6] A Putman, The Johnson homomorphism and its kernel

[7] A Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007) 829

[8] A Putman, An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591

[9] O Randal-Williams, Resolutions of moduli spaces and homology stability

[10] B Van Den Berg, On the abelianization of the Torelli group, PhD thesis, Universiteit Utrecht (2003)

Cité par Sources :