Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show for that the second homology group of the Torelli group, , is generated as an –module by the image of under the stabilization map. In the process we also show that the quotient by the Torelli group of the complex of arcs with identity permutation is –connected for .
Boldsen, Søren K 1 ; Dollerup, Mia Hauge 2
@article{GT_2012_16_3_a10, author = {Boldsen, S{\o}ren~K and Dollerup, Mia Hauge}, title = {Towards representation stability for the second homology of the {Torelli} group}, journal = {Geometry & topology}, pages = {1725--1765}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1725}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/} }
TY - JOUR AU - Boldsen, Søren K AU - Dollerup, Mia Hauge TI - Towards representation stability for the second homology of the Torelli group JO - Geometry & topology PY - 2012 SP - 1725 EP - 1765 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/ DO - 10.2140/gt.2012.16.1725 ID - GT_2012_16_3_a10 ER -
%0 Journal Article %A Boldsen, Søren K %A Dollerup, Mia Hauge %T Towards representation stability for the second homology of the Torelli group %J Geometry & topology %D 2012 %P 1725-1765 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/ %R 10.2140/gt.2012.16.1725 %F GT_2012_16_3_a10
Boldsen, Søren K; Dollerup, Mia Hauge. Towards representation stability for the second homology of the Torelli group. Geometry & topology, Tome 16 (2012) no. 3, pp. 1725-1765. doi : 10.2140/gt.2012.16.1725. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1725/
[1] Stable real cohomology of arithmetic groups II, from: "Manifolds and Lie groups (Notre Dame, IN, 1980)" (editors S Murakami, J Hano, K Okamoto, A Morimoto, H Ozeki), Progr. Math. 14, Birkhäuser (1981) 21
,[2] Cohomology of groups, Graduate Texts in Math. 87, Springer (1994)
,[3] Representation theory and homological stability
, ,[4] Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215
,[5] Complexes of curves and Teichmüller modular groups, Uspekhi Mat. Nauk 42 (1987) 49, 255
,[6] The Johnson homomorphism and its kernel
,[7] Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007) 829
,[8] An infinite presentation of the Torelli group, Geom. Funct. Anal. 19 (2009) 591
,[9] Resolutions of moduli spaces and homology stability
,[10] On the abelianization of the Torelli group, PhD thesis, Universiteit Utrecht (2003)
,Cité par Sources :