Obstructions to stably fibering manifolds
Geometry & topology, Tome 16 (2012) no. 3, pp. 1691-1724.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Is a given map between compact topological manifolds homotopic to the projection map of a fiber bundle? In this paper obstructions to this question are introduced with values in higher algebraic K–theory. Their vanishing implies that the given map fibers stably. The methods also provide results for the corresponding uniqueness question; moreover they apply to the fibering of Hilbert cube manifolds, generalizing results by Chapman and Ferry.

DOI : 10.2140/gt.2012.16.1691
Classification : 19J10, 55R10, 57N20
Keywords: fibering a manifold, algebraic $K$–theory of spaces

Steimle, Wolfgang 1

1 Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
@article{GT_2012_16_3_a9,
     author = {Steimle, Wolfgang},
     title = {Obstructions to stably fibering manifolds},
     journal = {Geometry & topology},
     pages = {1691--1724},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1691/}
}
TY  - JOUR
AU  - Steimle, Wolfgang
TI  - Obstructions to stably fibering manifolds
JO  - Geometry & topology
PY  - 2012
SP  - 1691
EP  - 1724
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1691/
DO  - 10.2140/gt.2012.16.1691
ID  - GT_2012_16_3_a9
ER  - 
%0 Journal Article
%A Steimle, Wolfgang
%T Obstructions to stably fibering manifolds
%J Geometry & topology
%D 2012
%P 1691-1724
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1691/
%R 10.2140/gt.2012.16.1691
%F GT_2012_16_3_a9
Steimle, Wolfgang. Obstructions to stably fibering manifolds. Geometry & topology, Tome 16 (2012) no. 3, pp. 1691-1724. doi : 10.2140/gt.2012.16.1691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1691/

[1] D R Anderson, The Whitehead torsion of a fiber-homotopy equivalence, Michigan Math. J. 21 (1974) 171

[2] M Bökstedt, F Waldhausen, The map $BSG\to A(*)\to QS^ 0$, from: "Algebraic topology and algebraic $K$–theory (Princeton, NJ, 1983)" (editor W Browder), Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 418

[3] W Browder, J Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966) 153

[4] G W Brumfiel, Homotopy equivalences of almost smooth manifolds, from: "Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, WI., 1970)" (editor A Liulevicius), Amer. Math. Soc. (1971) 73

[5] D Burghelea, Converting compact ANR fibrations into locally trivial bundles with compact manifolds as fibres, Compositio Math. 49 (1983) 95

[6] A J Casson, Fibrations over spheres, Topology 6 (1967) 489

[7] T A Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Math. 28, Amer. Math. Soc. (1976)

[8] T A Chapman, S Ferry, Fibering Hilbert cube manifolds over ANRs, Compositio Math. 36 (1978) 7

[9] W Dwyer, M Weiss, B Williams, A parametrized index theorem for the algebraic $K$–theory Euler class, Acta Math. 190 (2003) 1

[10] F T Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971/1972) 315

[11] F T Farrell, W Lück, W Steimle, Obstructions to fibering a manifold, Geom. Dedicata 148 (2010) 35

[12] M H Freedman, F Quinn, Topology of $4$–manifolds, Princeton Math. Series 39, Princeton Univ. Press (1990)

[13] A E Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 1" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 3

[14] F Hirzebruch, Topological methods in algebraic geometry, Classics in Math., Springer (1995)

[15] S L Hoehn, The moduli space of compact fiber bundle structures on a fibration, PhD thesis, University of Notre Dame (2009)

[16] K Igusa, What happens to Hatcher and Wagoner's formulas for $\pi_{0}C(M)$ when the first Postnikov invariant of $M$ is nontrivial?, from: "Algebraic $K$–theory, number theory, geometry and analysis (Bielefeld, 1982)" (editor A Bak), Lecture Notes in Math. 1046, Springer (1984) 104

[17] K Igusa, The stability theorem for smooth pseudoisotopies, $K$–Theory 2 (1988)

[18] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Math. Studies 88, Princeton Univ. Press (1977)

[19] J R Klein, B Williams, The refined transfer, bundle structures, and algebraic $K$–theory, J. Topol. 2 (2009) 321

[20] R C Lacher, Cell-like mappings, I, Pacific J. Math. 30 (1969) 717

[21] W Lück, The transfer maps induced in the algebraic $K_0$– and $K_1$–groups by a fibration II, J. Pure Appl. Algebra 45 (1987) 143

[22] I Madsen, R J Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Math. Studies 92, Princeton Univ. Press (1979)

[23] J Milnor, On spaces having the homotopy type of a $\mathrm{CW}$–complex, Trans. Amer. Math. Soc. 90 (1959) 272

[24] F Quinn, A geometric formulation of surgery, from: "Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, GA, 1969)" (editors J C Cantrell, C H Edwards), Markham (1970) 500

[25] R Reis, M Weiss, Smooth maps to the plane and Pontryagin classes, part II: Homotopy theory

[26] L C Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970) 1

[27] W Steimle, Whitehead-Torsion und Faserungen

[28] W Steimle, Obstructions to stably fibering manifolds, PhD thesis, Universität Münster (2010)

[29] W Steimle, Higher Whitehead torsion and the geometric assembly map, to appear in J. Topol.

[30] F Waldhausen, Algebraic $K$–theory of topological spaces. I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 1" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 35

[31] F Waldhausen, Algebraic $K$–theory of spaces, a manifold approach, from: "Current trends in algebraic topology, Part 1 (London, ON, 1981)" (editors R M Kane, S O Kochman, P S Selick, V P Snaith), CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141

[32] C T C Wall, Finiteness conditions for $\mathrm{CW}$–complexes, Ann. of Math. 81 (1965) 56

[33] C T C Wall, Classification problems in differential topology—IV: Thickenings, Topology 5 (1966) 73

[34] M Weiss, B Williams, Automorphisms of manifolds, from: "Surveys on surgery theory, Vol. 2" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 165

Cité par Sources :