Prym varieties of spectral covers
Geometry & topology, Tome 16 (2012) no. 3, pp. 1609-1638.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a possibly reducible and non-reduced spectral cover π: X C over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(XC). As an immediate application we show that the finite group of n–torsion points of the Jacobian of C acts trivially on the cohomology of the twisted SLn–Higgs moduli space up to the degree which is predicted by topological mirror symmetry. In particular this yields a new proof of a result of Harder–Narasimhan, showing that this finite group acts trivially on the cohomology of the twisted SLn stable bundle moduli space.

DOI : 10.2140/gt.2012.16.1609
Keywords: Prym varieties, Hitchin fibration, Higgs bundles, vector bundles on curves

Hausel, Tamás 1 ; Pauly, Christian 2

1 Section de Mathématiques, École Polytechnique Fédéral de Lausanne, Section 8, CH-1015 Lausanne, Switzerland
2 Laboratoire de Mathématiques J.A. Dieudonné, UMR no 7351 CNRS UNSA, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France
@article{GT_2012_16_3_a7,
     author = {Hausel, Tam\'as and Pauly, Christian},
     title = {Prym varieties of spectral covers},
     journal = {Geometry & topology},
     pages = {1609--1638},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1609},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/}
}
TY  - JOUR
AU  - Hausel, Tamás
AU  - Pauly, Christian
TI  - Prym varieties of spectral covers
JO  - Geometry & topology
PY  - 2012
SP  - 1609
EP  - 1638
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/
DO  - 10.2140/gt.2012.16.1609
ID  - GT_2012_16_3_a7
ER  - 
%0 Journal Article
%A Hausel, Tamás
%A Pauly, Christian
%T Prym varieties of spectral covers
%J Geometry & topology
%D 2012
%P 1609-1638
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/
%R 10.2140/gt.2012.16.1609
%F GT_2012_16_3_a7
Hausel, Tamás; Pauly, Christian. Prym varieties of spectral covers. Geometry & topology, Tome 16 (2012) no. 3, pp. 1609-1638. doi : 10.2140/gt.2012.16.1609. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/

[1] M Atiyah, The geometry and physics of knots, Lezioni Lincee., Cambridge Univ. Press (1990)

[2] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523

[3] A Beauville, M S Narasimhan, S Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169

[4] C Birkenhake, H Lange, Complex abelian varieties, Grundl. Math. Wissen. 302, Springer (2004)

[5] P H Chaudouard, G Laumon, Le lemme fondamental pondéré II: Énoncés cohomologiques

[6] M A De Cataldo, T Hausel, L Migliorini, Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$, Ann. of Math. 175 (2012) 1329

[7] J M Drézet, Faisceaux cohérents sur les courbes multiples, Collect. Math. 57 (2006) 121

[8] J M Drézet, Faisceaux sans torsion et faisceaux quasi localement libres sur les courbes multiples primitives, Math. Nachr. 282 (2009) 919

[9] E Frenkel, E Witten, Geometric endoscopy and mirror symmetry, Commun. Number Theory Phys. 2 (2008) 113

[10] O García-Prada, J Heinloth, A Schmitt, On the motives of moduli of chains and Higgs bundles

[11] A Grothendieck, Éléments de géométrie algébrique II: Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Etudes Sci. 8 (1961) 5

[12] A Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Etudes Sci. (1967) 5

[13] G Harder, M S Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75) 215

[14] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)

[15] T Hausel, Global topology of the Hitchin system

[16] T Hausel, Compactification of moduli of Higgs bundles, J. Reine Angew. Math. 503 (1998) 169

[17] T Hausel, M Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003) 197

[18] N Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91

[19] B Iversen, Cohomology of sheaves, Universitext, Springer (1986)

[20] A Kapustin, E Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1

[21] F C Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton Univ. Press (1984)

[22] S L Kleiman, The Picard scheme, from: "Fundamental algebraic geometry", Math. Surveys Monogr. 123, Amer. Math. Soc. (2005) 235

[23] Q Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press (2002)

[24] I G Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962) 319

[25] H Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society (1999)

[26] P E Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972) 337

[27] B C Ngô, Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006) 399

[28] B C Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. (2010) 1

[29] N Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62 (1991) 275

[30] D Schaub, Courbes spectrales et compactifications de jacobiennes, Math. Z. 227 (1998) 295

[31] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci. Publ. Math. (1994) 47

[32] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety II, Inst. Hautes Études Sci. Publ. Math. (1994) 5

[33] C Simpson, The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217

Cité par Sources :