Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a possibly reducible and non-reduced spectral cover over a smooth projective complex curve we determine the group of connected components of the Prym variety . As an immediate application we show that the finite group of –torsion points of the Jacobian of acts trivially on the cohomology of the twisted –Higgs moduli space up to the degree which is predicted by topological mirror symmetry. In particular this yields a new proof of a result of Harder–Narasimhan, showing that this finite group acts trivially on the cohomology of the twisted stable bundle moduli space.
Hausel, Tamás 1 ; Pauly, Christian 2
@article{GT_2012_16_3_a7, author = {Hausel, Tam\'as and Pauly, Christian}, title = {Prym varieties of spectral covers}, journal = {Geometry & topology}, pages = {1609--1638}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1609}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/} }
Hausel, Tamás; Pauly, Christian. Prym varieties of spectral covers. Geometry & topology, Tome 16 (2012) no. 3, pp. 1609-1638. doi : 10.2140/gt.2012.16.1609. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1609/
[1] The geometry and physics of knots, Lezioni Lincee., Cambridge Univ. Press (1990)
,[2] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523
, ,[3] Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989) 169
, , ,[4] Complex abelian varieties, Grundl. Math. Wissen. 302, Springer (2004)
, ,[5] Le lemme fondamental pondéré II: Énoncés cohomologiques
, ,[6] Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$, Ann. of Math. 175 (2012) 1329
, , ,[7] Faisceaux cohérents sur les courbes multiples, Collect. Math. 57 (2006) 121
,[8] Faisceaux sans torsion et faisceaux quasi localement libres sur les courbes multiples primitives, Math. Nachr. 282 (2009) 919
,[9] Geometric endoscopy and mirror symmetry, Commun. Number Theory Phys. 2 (2008) 113
, ,[10] On the motives of moduli of chains and Higgs bundles
, , ,[11] Éléments de géométrie algébrique II: Étude globale élémentaire de quelques classes de morphismes, Publ. Math. Inst. Hautes Etudes Sci. 8 (1961) 5
,[12] Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math. Inst. Hautes Etudes Sci. (1967) 5
,[13] On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75) 215
, ,[14] Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)
,[15] Global topology of the Hitchin system
,[16] Compactification of moduli of Higgs bundles, J. Reine Angew. Math. 503 (1998) 169
,[17] Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003) 197
, ,[18] Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91
,[19] Cohomology of sheaves, Universitext, Springer (1986)
,[20] Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007) 1
, ,[21] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton Univ. Press (1984)
,[22] The Picard scheme, from: "Fundamental algebraic geometry", Math. Surveys Monogr. 123, Amer. Math. Soc. (2005) 235
,[23] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics 6, Oxford University Press (2002)
,[24] Symmetric products of an algebraic curve, Topology 1 (1962) 319
,[25] Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society (1999)
,[26] Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Amer. Math. Soc. 169 (1972) 337
,[27] Fibration de Hitchin et endoscopie, Invent. Math. 164 (2006) 399
,[28] Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. (2010) 1
,[29] Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62 (1991) 275
,[30] Courbes spectrales et compactifications de jacobiennes, Math. Z. 227 (1998) 295
,[31] Moduli of representations of the fundamental group of a smooth projective variety I, Inst. Hautes Études Sci. Publ. Math. (1994) 47
,[32] Moduli of representations of the fundamental group of a smooth projective variety II, Inst. Hautes Études Sci. Publ. Math. (1994) 5
,[33] The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217
,Cité par Sources :