Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given an –manifold and an –category , we define a chain complex (the “blob complex”) . The blob complex can be thought of as a derived category analogue of the Hilbert space of a TQFT, and also as a generalization of Hochschild homology to –categories and –manifolds. It enjoys a number of nice formal properties, including a higher dimensional generalization of Deligne’s conjecture about the action of the little disks operad on Hochschild cochains. Along the way, we give a definition of a weak –category with strong duality which is particularly well suited for work with TQFTs. This is the published version of [arXiv 1009.5025].
Morrison, Scott 1 ; Walker, Kevin 2
@article{GT_2012_16_3_a6, author = {Morrison, Scott and Walker, Kevin}, title = {Blob homology}, journal = {Geometry & topology}, pages = {1481--1607}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1481}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/} }
Morrison, Scott; Walker, Kevin. Blob homology. Geometry & topology, Tome 16 (2012) no. 3, pp. 1481-1607. doi : 10.2140/gt.2012.16.1481. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/
[1] From manifolds to invariants of $E_n$–algebras, PhD thesis, Massachusetts Institute of Technology (2010)
,[2] Spherical categories, Adv. Math. 143 (1999) 357
, ,[3] Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, from: "Operator algebras and their applications (Waterloo, ON, 1994/1995)" (editors P A Fillmore, J A Mingo), Fields Inst. Commun. 13, Amer. Math. Soc. (1997) 13
,[4] Moore hyperrectangles on a space form a strict cubical omega-category
,[5] Cyclic homology and algebraic $K$–theory of spaces—II, Topology 25 (1986) 303
, ,[6] Perturbations of planar algebras
, , ,[7] Deformations of spaces of imbeddings, Ann. Math. 93 (1971) 63
, ,[8] Methods of homological algebra, Springer (1996)
, ,[9] Operads, homotopy algebra, and iterated integrals for double loop spaces
, ,[10] Cyclic homology, derivations, and the free loopspace, Topology 24 (1985) 187
,[11] Deformations of algebras over operads and the Deligne conjecture, from: "Conférence Moshé Flato 1999, Vol. I (Dijon)" (editors G Dito, D Sternheimer), Math. Phys. Stud. 21, Kluwer Acad. Publ. (2000) 255
, ,[12] Higher operads, higher categories, London Math. Soc. Lecture Note Series 298, Cambridge Univ. Press (2004)
,[13] Derived algebraic geometry VI: $E_k$ algebras
,[14] Applications of negative dimensional tensors, from: "Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969)" (editor D J A Welsh), Academic Press (1971) 221
,[15] Spinors and space-time, Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monogr. on Math. Physics, Cambridge Univ. Press (1984)
, ,[16] A survey of graphical languages for monoidal categories, from: "New structures for physics" (editor B Coecke), Lecture Notes in Phys. 813, Springer (2011) 289
,[17] Algebraic topology, McGraw-Hill (1966)
,[18] Traces in monoidal categories
, ,[19] What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247
, ,[20] Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003) 65
,[21]
, personal communication (2008)[22] The Swiss-cheese operad, from: "Homotopy invariant algebraic structures (Baltimore, MD, 1998)" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 365
,[23] Homotopy Gerstenhaber algebras, from: "Conférence Moshé Flato 1999, Vol. II (Dijon)" (editors G Dito, D Sternheimer), Math. Phys. Stud. 22, Kluwer Acad. Publ. (2000) 307
,[24] Higher-order operations on the Hochschild complex, Funktsional. Anal. i Prilozhen. 29 (1995) 1, 96
, ,[25] TQFTs, notes (2006)
,Cité par Sources :