Blob homology
Geometry & topology, Tome 16 (2012) no. 3, pp. 1481-1607.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given an n–manifold M and an n–category C, we define a chain complex (the “blob complex”) (M;C). The blob complex can be thought of as a derived category analogue of the Hilbert space of a TQFT, and also as a generalization of Hochschild homology to n–categories and n–manifolds. It enjoys a number of nice formal properties, including a higher dimensional generalization of Deligne’s conjecture about the action of the little disks operad on Hochschild cochains. Along the way, we give a definition of a weak n–category with strong duality which is particularly well suited for work with TQFTs. This is the published version of [arXiv 1009.5025].

DOI : 10.2140/gt.2012.16.1481
Classification : 57R56
Keywords: topological quantum field theory, Hochschild homology, Deligne conjecture

Morrison, Scott 1 ; Walker, Kevin 2

1 Department of Mathematics, University of California, Berkeley, Berkeley CA 94720, USA
2 Microsoft Station Q, University of California, Santa Barbara CA 93106-6105, USA
@article{GT_2012_16_3_a6,
     author = {Morrison, Scott and Walker, Kevin},
     title = {Blob homology},
     journal = {Geometry & topology},
     pages = {1481--1607},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1481},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/}
}
TY  - JOUR
AU  - Morrison, Scott
AU  - Walker, Kevin
TI  - Blob homology
JO  - Geometry & topology
PY  - 2012
SP  - 1481
EP  - 1607
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/
DO  - 10.2140/gt.2012.16.1481
ID  - GT_2012_16_3_a6
ER  - 
%0 Journal Article
%A Morrison, Scott
%A Walker, Kevin
%T Blob homology
%J Geometry & topology
%D 2012
%P 1481-1607
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/
%R 10.2140/gt.2012.16.1481
%F GT_2012_16_3_a6
Morrison, Scott; Walker, Kevin. Blob homology. Geometry & topology, Tome 16 (2012) no. 3, pp. 1481-1607. doi : 10.2140/gt.2012.16.1481. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1481/

[1] R Andrade, From manifolds to invariants of $E_n$–algebras, PhD thesis, Massachusetts Institute of Technology (2010)

[2] J W Barrett, B W Westbury, Spherical categories, Adv. Math. 143 (1999) 357

[3] D Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, from: "Operator algebras and their applications (Waterloo, ON, 1994/1995)" (editors P A Fillmore, J A Mingo), Fields Inst. Commun. 13, Amer. Math. Soc. (1997) 13

[4] R Brown, Moore hyperrectangles on a space form a strict cubical omega-category

[5] D Burghelea, Z Fiedorowicz, Cyclic homology and algebraic $K$–theory of spaces—II, Topology 25 (1986) 303

[6] P Das, S Ghosh, V Gupta, Perturbations of planar algebras

[7] R D Edwards, R C Kirby, Deformations of spaces of imbeddings, Ann. Math. 93 (1971) 63

[8] S I Gelfand, Y I Manin, Methods of homological algebra, Springer (1996)

[9] E Getzler, J D S Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces

[10] T G Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985) 187

[11] M Kontsevich, Y Soibelman, Deformations of algebras over operads and the Deligne conjecture, from: "Conférence Moshé Flato 1999, Vol. I (Dijon)" (editors G Dito, D Sternheimer), Math. Phys. Stud. 21, Kluwer Acad. Publ. (2000) 255

[12] T Leinster, Higher operads, higher categories, London Math. Soc. Lecture Note Series 298, Cambridge Univ. Press (2004)

[13] J Lurie, Derived algebraic geometry VI: $E_k$ algebras

[14] R Penrose, Applications of negative dimensional tensors, from: "Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969)" (editor D J A Welsh), Academic Press (1971) 221

[15] R Penrose, W Rindler, Spinors and space-time, Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monogr. on Math. Physics, Cambridge Univ. Press (1984)

[16] P Selinger, A survey of graphical languages for monoidal categories, from: "New structures for physics" (editor B Coecke), Lecture Notes in Phys. 813, Springer (2011) 289

[17] E H Spanier, Algebraic topology, McGraw-Hill (1966)

[18] S Stolz, P Teichner, Traces in monoidal categories

[19] S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247

[20] D E Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003) 65

[21] U Tillmann, personal communication (2008)

[22] A A Voronov, The Swiss-cheese operad, from: "Homotopy invariant algebraic structures (Baltimore, MD, 1998)" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 365

[23] A A Voronov, Homotopy Gerstenhaber algebras, from: "Conférence Moshé Flato 1999, Vol. II (Dijon)" (editors G Dito, D Sternheimer), Math. Phys. Stud. 22, Kluwer Acad. Publ. (2000) 307

[24] A A Voronov, M Gerstenhaber, Higher-order operations on the Hochschild complex, Funktsional. Anal. i Prilozhen. 29 (1995) 1, 96

[25] K Walker, TQFTs, notes (2006)

Cité par Sources :