Whitney tower concordance of classical links
Geometry & topology, Tome 16 (2012) no. 3, pp. 1419-1479.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper computes Whitney tower filtrations of classical links. Whitney towers consist of iterated stages of Whitney disks and allow a tree-valued intersection theory, showing that the associated graded quotients of the filtration are finitely generated abelian groups. Twisted Whitney towers are studied and a new quadratic refinement of the intersection theory is introduced, measuring Whitney disk framing obstructions. It is shown that the filtrations are completely classified by Milnor invariants together with new higher-order Sato–Levine and higher-order Arf invariants, which are obstructions to framing a twisted Whitney tower in the 4–ball bounded by a link in the 3–sphere. Applications include computation of the grope filtration and new geometric characterizations of Milnor’s link invariants.

DOI : 10.2140/gt.2012.16.1419
Classification : 57M25, 57M27, 57Q60, 57N10
Keywords: Whitney tower, grope, link concordance, tree, higher-order Arf invariant, higher-order Sato–Levine invariant, twisted Whitney disk

Conant, James 1 ; Schneiderman, Rob 2 ; Teichner, Peter 3

1 Department of Mathematics, University of Tennessee, Knoxville TN 37996, USA
2 Department of Mathematics and Computer Science, Lehman College, CUNY, Bronx NY 10468-1589, USA
3 Department of Mathematics, University of California, Berkeley, Berkeley CA 94720-3840, USA, Max-Planck Institut für Mathematik, Bonn, Germany
@article{GT_2012_16_3_a5,
     author = {Conant, James and Schneiderman, Rob and Teichner, Peter},
     title = {Whitney tower concordance of classical links},
     journal = {Geometry & topology},
     pages = {1419--1479},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1419},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1419/}
}
TY  - JOUR
AU  - Conant, James
AU  - Schneiderman, Rob
AU  - Teichner, Peter
TI  - Whitney tower concordance of classical links
JO  - Geometry & topology
PY  - 2012
SP  - 1419
EP  - 1479
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1419/
DO  - 10.2140/gt.2012.16.1419
ID  - GT_2012_16_3_a5
ER  - 
%0 Journal Article
%A Conant, James
%A Schneiderman, Rob
%A Teichner, Peter
%T Whitney tower concordance of classical links
%J Geometry & topology
%D 2012
%P 1419-1479
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1419/
%R 10.2140/gt.2012.16.1419
%F GT_2012_16_3_a5
Conant, James; Schneiderman, Rob; Teichner, Peter. Whitney tower concordance of classical links. Geometry & topology, Tome 16 (2012) no. 3, pp. 1419-1479. doi : 10.2140/gt.2012.16.1419. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1419/

[1] J C Cha, Link concordance, homology cobordism, and Hirzebruch-type defects from iterated $p$–covers, J. Eur. Math. Soc. 12 (2010) 555

[2] T D Cochran, Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84, no. 427, Amer. Math. Soc. (1990)

[3] T D Cochran, $k$–Cobordism for links in $S^3$, Trans. Amer. Math. Soc. 327 (1991) 641

[4] T D Cochran, S Harvey, C Leidy, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009) 1419

[5] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. 157 (2003) 433

[6] T D Cochran, P Teichner, Knot concordance and von Neumann $\rho$–invariants, Duke Math. J. 137 (2007) 337

[7] J Conant, R Schneiderman, P Teichner, Jacobi identities in low-dimensional topology, Compos. Math. 143 (2007) 780

[8] J Conant, R Schneiderman, P Teichner, Milnor invariants and twisted Whitney towers

[9] J Conant, R Schneiderman, P Teichner, Universal quadratic refinements and untwisting Whitney towers

[10] J Conant, R Schneiderman, P Teichner, Universal quadratic refinements and Whitney towers

[11] J Conant, R Schneiderman, P Teichner, Tree homology and a conjecture of Levine, Geom. Topol. 16 (2012) 555

[12] J Conant, R Schneiderman, P Teichner, Geometric filtrations of string links and homology cylinders

[13] J Conant, P Teichner, Grope cobordism and Feynman diagrams, Math. Ann. 328 (2004) 135

[14] J Conant, P Teichner, Grope cobordism of classical knots, Topology 43 (2004) 119

[15] M H Freedman, The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983)" (editors Z Ciesielski, C Olech), PWN (1984) 647

[16] M H Freedman, R Kirby, A geometric proof of Rochlin's theorem, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 85

[17] M H Freedman, F Quinn, Topology of $4$–manifolds, Princeton Math. Series 39, Princeton Univ. Press (1990)

[18] M H Freedman, P Teichner, $4$–manifold topology II: Dwyer's filtration and surgery kernels, Invent. Math. 122 (1995) 531

[19] N Habegger, G Masbaum, The Kontsevich integral and Milnor's invariants, Topology 39 (2000) 1253

[20] K Igusa, K E Orr, Links, pictures and the homology of nilpotent groups, Topology 40 (2001) 1125

[21] V S Krushkal, Exponential separation in $4$–manifolds, Geom. Topol. 4 (2000) 397

[22] V S Krushkal, P Teichner, Alexander duality, gropes and link homotopy, Geom. Topol. 1 (1997) 51

[23] J Levine, Addendum and correction to: “Homology cylinders: an enlargement of the mapping class group” \rm[Algebr. Geom. Topol. 1 (2001) 243–270 MR1823501], Algebr. Geom. Topol. 2 (2002) 1197

[24] J Levine, Labeled binary planar trees and quasi-Lie algebras, Algebr. Geom. Topol. 6 (2006) 935

[25] Y Matsumoto, Secondary intersectional properties of $4$–manifolds and Whitney's trick, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 99

[26] J B Meilhan, A Yasuhara, Characterization of finite type string link invariants of degree $\lt 5$, Math. Proc. Cambridge Philos. Soc. 148 (2010) 439

[27] K E Orr, Homotopy invariants of links, Invent. Math. 95 (1989) 379

[28] R Schneiderman, Simple Whitney towers, half-gropes and the Arf invariant of a knot, Pacific J. Math. 222 (2005) 169

[29] R Schneiderman, Whitney towers and gropes in $4$–manifolds, Trans. Amer. Math. Soc. 358 (2006) 4251

[30] R Schneiderman, Stable concordance of knots in $3$–manifolds, Algebr. Geom. Topol. 10 (2010) 373

[31] R Schneiderman, P Teichner, Higher order intersection numbers of $2$–spheres in $4$–manifolds, Algebr. Geom. Topol. 1 (2001) 1

[32] R Schneiderman, P Teichner, Whitney towers and the Kontsevich integral, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7, Geom. Topol. Publ. (2004) 101

[33] A Scorpan, The wild world of $4$–manifolds, Amer. Math. Soc. (2005)

[34] R Stong, Existence of $\pi_1$–negligible embeddings in $4$–manifolds: A correction to Theorem 10.5 of Freedmann and Quinn, Proc. Amer. Math. Soc. 120 (1994) 1309

[35] P Teichner, Knots, von Neumann signatures, and grope cobordism, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)" (editor T Li), Higher Ed. Press (2002) 437

[36] P Teichner, What is $\ldots$ a grope?, Notices Amer. Math. Soc. 51 (2004) 894

[37] H Whitney, The self-intersections of a smooth $n$–manifold in $2n$–space, Ann. of Math. 45 (1944) 220

[38] M Yamasaki, Whitney's trick for three $2$–dimensional homology classes of $4$–manifolds, Proc. Amer. Math. Soc. 75 (1979) 365

Cité par Sources :