All finite groups are involved in the mapping class group
Geometry & topology, Tome 16 (2012) no. 3, pp. 1393-1411.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Γg denote the orientation-preserving mapping class group of the genus g 1 closed orientable surface. In this paper we show that for fixed g, every finite group occurs as a quotient of a finite index subgroup of Γg.

DOI : 10.2140/gt.2012.16.1393
Classification : 20F38, 57R56
Keywords: mapping class group, finite quotient, representation, Zariski dense subgroup

Masbaum, Gregor 1 ; Reid, Alan W 2

1 Institut de Mathématiques de Jussieu (UMR 7586 du CNRS), Case 247, 4 pl. Jussieu, 75252 Cedex 5 Paris, France
2 Department of Mathematics, University of Texas, 1 Station C1200, Austin TX 78712-0257, USA
@article{GT_2012_16_3_a3,
     author = {Masbaum, Gregor and Reid, Alan W},
     title = {All finite groups are involved in the mapping class group},
     journal = {Geometry & topology},
     pages = {1393--1411},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1393},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/}
}
TY  - JOUR
AU  - Masbaum, Gregor
AU  - Reid, Alan W
TI  - All finite groups are involved in the mapping class group
JO  - Geometry & topology
PY  - 2012
SP  - 1393
EP  - 1411
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/
DO  - 10.2140/gt.2012.16.1393
ID  - GT_2012_16_3_a3
ER  - 
%0 Journal Article
%A Masbaum, Gregor
%A Reid, Alan W
%T All finite groups are involved in the mapping class group
%J Geometry & topology
%D 2012
%P 1393-1411
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/
%R 10.2140/gt.2012.16.1393
%F GT_2012_16_3_a3
Masbaum, Gregor; Reid, Alan W. All finite groups are involved in the mapping class group. Geometry & topology, Tome 16 (2012) no. 3, pp. 1393-1411. doi : 10.2140/gt.2012.16.1393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/

[1] I Agol, D D Long, A W Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. 153 (2001) 599

[2] H Bass, J Milnor, J P Serre, Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59

[3] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431

[4] J A Berrick, V Gebhardt, L Paris, Finite index subgroups of mapping class groups

[5] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883

[6] A Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111

[7] A Borel, Linear algebraic groups, W. A. Benjamin (1969)

[8] A Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962) 485

[9] A Borel, J Tits, Compléments à l'article: “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. (1972) 253

[10] N M Dunfield, W P Thurston, Finite covers of random $3$–manifolds, Invent. Math. 166 (2006) 457

[11] N M Dunfield, H Wong, Quantum invariants of random $3$–manifolds, Algebr. Geom. Topol. 11 (2011) 2191

[12] L Funar, Zariski density and finite quotients of mapping class groups, to appear in Int. Math. Res. Not. 2012 (2012)

[13] L Funar, W Pitsch, Finite quotients of symplectic groups vs mapping class groups

[14] R Gilman, Finite quotients of the automorphism group of a free group, Canad. J. Math. 29 (1977) 541

[15] P M Gilmer, G Masbaum, Maslov index, Lagrangians, mapping class groups and TQFT, to appear in Forum Math.

[16] P M Gilmer, G Masbaum, Integral lattices in TQFT, Ann. Sci. École Norm. Sup. 40 (2007) 815

[17] P M Gilmer, G Masbaum, P Van Wamelen, Integral bases for TQFT modules and unimodular representations of mapping class groups, Comment. Math. Helv. 79 (2004) 260

[18] E K Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. 9 (1974/75) 160

[19] F Grunewald, A Lubotzky, Linear representations of the automorphism group of a free group, Geom. Funct. Anal. 18 (2009) 1564

[20] D Johnson, The structure of the Torelli group I: A finite set of generators for $\mathcal{I}$, Ann. of Math. 118 (1983) 423

[21] M Korkmaz, On cofinite subgroups of mapping class groups, Turkish J. Math. 27 (2003) 115

[22] M Larsen, Z Wang, Density of the $\mathrm{SO}(3)$ TQFT representation of mapping class groups, Comm. Math. Phys. 260 (2005) 641

[23] C J Leininger, D B Mcreynolds, Separable subgroups of mapping class groups, Topology Appl. 154 (2007) 1

[24] D D Long, A W Reid, Surface subgroups and subgroup separability in $3$–manifold topology, IMPA Math. Publ., Inst. Nacional de Mat. Pura e Aplicada (2005) 53

[25] E Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1997) 69

[26] A Lubotzky, D Segal, Subgroup growth, Progress in Math. 212, Birkhäuser (2003)

[27] G Masbaum, On representations of mapping class groups in Integral TQFT, Oberwolfach Reports 5 (2008) 1157–1232

[28] G Masbaum, J D Roberts, On central extensions of mapping class groups, Math. Ann. 302 (1995) 131

[29] G Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992) 775

[30] D W Morris, Ratner's theorems on unipotent flows, Chicago Lectures in Math., Univ. of Chicago Press (2005)

[31] G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171

[32] M V Nori, On subgroups of $\mathrm{GL}_n(\mathbf{F}_p)$, Invent. Math. 88 (1987) 257

[33] V Platonov, A Rapinchuk, Algebraic groups and number theory, Pure and Applied Math. 139, Academic Press (1994)

[34] N Reshetikhin, V G Turaev, Invariants of $3$–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547

[35] G Shimura, Arithmetic of unitary groups, Ann. of Math. 79 (1964) 369

[36] G Shimura, Arithmetic of Hermitian forms, Doc. Math. 13 (2008) 739

[37] J Tits, Classification of algebraic semisimple groups, from: "Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, CO, 1965)" (editors A Borel, G D Mostow), Amer. Math. Soc. (1966) 33

[38] J Tits, Reductive groups over local fields, from: "Automorphic forms, representations and $L$–functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 1" (editor A Borel), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc. (1979) 29

[39] E B Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 45

[40] B Weisfeiler, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. 120 (1984) 271

Cité par Sources :