Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let denote the orientation-preserving mapping class group of the genus closed orientable surface. In this paper we show that for fixed , every finite group occurs as a quotient of a finite index subgroup of .
Masbaum, Gregor 1 ; Reid, Alan W 2
@article{GT_2012_16_3_a3, author = {Masbaum, Gregor and Reid, Alan W}, title = {All finite groups are involved in the mapping class group}, journal = {Geometry & topology}, pages = {1393--1411}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1393}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/} }
TY - JOUR AU - Masbaum, Gregor AU - Reid, Alan W TI - All finite groups are involved in the mapping class group JO - Geometry & topology PY - 2012 SP - 1393 EP - 1411 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/ DO - 10.2140/gt.2012.16.1393 ID - GT_2012_16_3_a3 ER -
Masbaum, Gregor; Reid, Alan W. All finite groups are involved in the mapping class group. Geometry & topology, Tome 16 (2012) no. 3, pp. 1393-1411. doi : 10.2140/gt.2012.16.1393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1393/
[1] The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. 153 (2001) 599
, , ,[2] Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59
, , ,[3] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431
, , ,[4] Finite index subgroups of mapping class groups
, , ,[5] Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883
, , , ,[6] Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111
,[7] Linear algebraic groups, W. A. Benjamin (1969)
,[8] Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962) 485
, ,[9] Compléments à l'article: “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. (1972) 253
, ,[10] Finite covers of random $3$–manifolds, Invent. Math. 166 (2006) 457
, ,[11] Quantum invariants of random $3$–manifolds, Algebr. Geom. Topol. 11 (2011) 2191
, ,[12] Zariski density and finite quotients of mapping class groups, to appear in Int. Math. Res. Not. 2012 (2012)
,[13] Finite quotients of symplectic groups vs mapping class groups
, ,[14] Finite quotients of the automorphism group of a free group, Canad. J. Math. 29 (1977) 541
,[15] Maslov index, Lagrangians, mapping class groups and TQFT, to appear in Forum Math.
, ,[16] Integral lattices in TQFT, Ann. Sci. École Norm. Sup. 40 (2007) 815
, ,[17] Integral bases for TQFT modules and unimodular representations of mapping class groups, Comment. Math. Helv. 79 (2004) 260
, , ,[18] On the residual finiteness of certain mapping class groups, J. London Math. Soc. 9 (1974/75) 160
,[19] Linear representations of the automorphism group of a free group, Geom. Funct. Anal. 18 (2009) 1564
, ,[20] The structure of the Torelli group I: A finite set of generators for $\mathcal{I}$, Ann. of Math. 118 (1983) 423
,[21] On cofinite subgroups of mapping class groups, Turkish J. Math. 27 (2003) 115
,[22] Density of the $\mathrm{SO}(3)$ TQFT representation of mapping class groups, Comm. Math. Phys. 260 (2005) 641
, ,[23] Separable subgroups of mapping class groups, Topology Appl. 154 (2007) 1
, ,[24] Surface subgroups and subgroup separability in $3$–manifold topology, IMPA Math. Publ., Inst. Nacional de Mat. Pura e Aplicada (2005) 53
, ,[25] Prym representations of mapping class groups, Geom. Dedicata 64 (1997) 69
,[26] Subgroup growth, Progress in Math. 212, Birkhäuser (2003)
, ,[27] On representations of mapping class groups in Integral TQFT, Oberwolfach Reports 5 (2008) 1157–1232
,[28] On central extensions of mapping class groups, Math. Ann. 302 (1995) 131
, ,[29] The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992) 775
,[30] Ratner's theorems on unipotent flows, Chicago Lectures in Math., Univ. of Chicago Press (2005)
,[31] On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171
,[32] On subgroups of $\mathrm{GL}_n(\mathbf{F}_p)$, Invent. Math. 88 (1987) 257
,[33] Algebraic groups and number theory, Pure and Applied Math. 139, Academic Press (1994)
, ,[34] Invariants of $3$–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547
, ,[35] Arithmetic of unitary groups, Ann. of Math. 79 (1964) 369
,[36] Arithmetic of Hermitian forms, Doc. Math. 13 (2008) 739
,[37] Classification of algebraic semisimple groups, from: "Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, CO, 1965)" (editors A Borel, G D Mostow), Amer. Math. Soc. (1966) 33
,[38] Reductive groups over local fields, from: "Automorphic forms, representations and $L$–functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, 1977), Part 1" (editor A Borel), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc. (1979) 29
,[39] Rings of definition of dense subgroups of semisimple linear groups, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971) 45
,[40] Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. 120 (1984) 271
,Cité par Sources :