Geodesic flow for CAT(0)–groups
Geometry & topology, Tome 16 (2012) no. 3, pp. 1345-1391.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We associate to a CAT(0)–space a flow space that can be used as the replacement for the geodesic flow on the sphere tangent bundle of a Riemannian manifold. We use this flow space to prove that CAT(0)–group are transfer reducible over the family of virtually cyclic groups. This result is an important ingredient in our proof of the Farrell–Jones Conjecture for these groups.

DOI : 10.2140/gt.2012.16.1345
Keywords: geodesic flow space, $\mathrm{CAT}(0)$–groups, Farrell–Jones Conjecture

Bartels, Arthur 1 ; Lück, Wolfgang 2

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
2 Mathematisches Institut, Rheinische Wilhelms-Universität Bonn, Endenicher Allee 62, 53115 Bonn, Germany
@article{GT_2012_16_3_a2,
     author = {Bartels, Arthur and L\"uck, Wolfgang},
     title = {Geodesic flow for {CAT(0){\textendash}groups}},
     journal = {Geometry & topology},
     pages = {1345--1391},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1345},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/}
}
TY  - JOUR
AU  - Bartels, Arthur
AU  - Lück, Wolfgang
TI  - Geodesic flow for CAT(0)–groups
JO  - Geometry & topology
PY  - 2012
SP  - 1345
EP  - 1391
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/
DO  - 10.2140/gt.2012.16.1345
ID  - GT_2012_16_3_a2
ER  - 
%0 Journal Article
%A Bartels, Arthur
%A Lück, Wolfgang
%T Geodesic flow for CAT(0)–groups
%J Geometry & topology
%D 2012
%P 1345-1391
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/
%R 10.2140/gt.2012.16.1345
%F GT_2012_16_3_a2
Bartels, Arthur; Lück, Wolfgang. Geodesic flow for CAT(0)–groups. Geometry & topology, Tome 16 (2012) no. 3, pp. 1345-1391. doi : 10.2140/gt.2012.16.1345. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/

[1] A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631

[2] A Bartels, W Lück, H Reich, Equivariant covers for hyperbolic groups, Geom. Topol. 12 (2008) 1799

[3] A Bartels, W Lück, H Reich, On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57

[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[5] A Dold, Lectures on algebraic topology, Grundl. Math. Wissen. 200, Springer (1980)

[6] F T Farrell, L E Jones, Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991) 769

[7] F T Farrell, L E Jones, Topological rigidity for compact non-positively curved manifolds, from: "Differential geometry: Riemannian geometry (Los Angeles, CA, 1990)", Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 229

[8] W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–Theory" (editors E M Friedlander, D R Grayson), Springer (2005) 703

[9] I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403

[10] J R Munkres, Topology: a first course, Prentice-Hall (1975)

[11] K Nagami, Mappings of finite order and dimension theory, Japan. J. Math. 30 (1960) 25

[12] N E Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967) 133

Cité par Sources :