Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We associate to a –space a flow space that can be used as the replacement for the geodesic flow on the sphere tangent bundle of a Riemannian manifold. We use this flow space to prove that –group are transfer reducible over the family of virtually cyclic groups. This result is an important ingredient in our proof of the Farrell–Jones Conjecture for these groups.
Bartels, Arthur 1 ; Lück, Wolfgang 2
@article{GT_2012_16_3_a2, author = {Bartels, Arthur and L\"uck, Wolfgang}, title = {Geodesic flow for {CAT(0){\textendash}groups}}, journal = {Geometry & topology}, pages = {1345--1391}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1345}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/} }
Bartels, Arthur; Lück, Wolfgang. Geodesic flow for CAT(0)–groups. Geometry & topology, Tome 16 (2012) no. 3, pp. 1345-1391. doi : 10.2140/gt.2012.16.1345. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1345/
[1] The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631
, ,[2] Equivariant covers for hyperbolic groups, Geom. Topol. 12 (2008) 1799
, , ,[3] On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57
, , ,[4] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[5] Lectures on algebraic topology, Grundl. Math. Wissen. 200, Springer (1980)
,[6] Stable pseudoisotopy spaces of compact non-positively curved manifolds, J. Differential Geom. 34 (1991) 769
, ,[7] Topological rigidity for compact non-positively curved manifolds, from: "Differential geometry: Riemannian geometry (Los Angeles, CA, 1990)", Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 229
, ,[8] The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–Theory" (editors E M Friedlander, D R Grayson), Springer (2005) 703
, ,[9] Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403
,[10] Topology: a first course, Prentice-Hall (1975)
,[11] Mappings of finite order and dimension theory, Japan. J. Math. 30 (1960) 25
,[12] A convenient category of topological spaces, Michigan Math. J. 14 (1967) 133
,Cité par Sources :