Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that while there are maps of arbitrarily large degree, there is no branched cover from the –torus to . More generally, we obtain that, as long as a closed manifold satisfies a suitable cohomological condition, any –surjective branched cover is a homeomorphism.
This article is incorrect. Text of retraction received 14 February 2019
Pankka, Pekka 1 ; Souto, Juan 2
@article{GT_2012_16_3_a1, author = {Pankka, Pekka and Souto, Juan}, title = {On the nonexistence of certain branched covers}, journal = {Geometry & topology}, pages = {1321--1344}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2012}, doi = {10.2140/gt.2012.16.1321}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/} }
TY - JOUR AU - Pankka, Pekka AU - Souto, Juan TI - On the nonexistence of certain branched covers JO - Geometry & topology PY - 2012 SP - 1321 EP - 1344 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/ DO - 10.2140/gt.2012.16.1321 ID - GT_2012_16_3_a1 ER -
Pankka, Pekka; Souto, Juan. On the nonexistence of certain branched covers. Geometry & topology, Tome 16 (2012) no. 3, pp. 1321-1344. doi : 10.2140/gt.2012.16.1321. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/
[1] Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920) 370 | DOI
,[2] The degree and branch set of a branched covering, Invent. Math. 45 (1978) 213 | DOI
, ,[3] On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979) 87 | DOI
, ,[4] Quasiregular mappings and cohomology, Acta Math. 186 (2001) 219 | DOI
, ,[5] Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35
,[6] Introduction to compact transformation groups, 46, Academic Press (1972)
,[7] Topology and geometry, 139, Springer (1997)
,[8] Finite-to-one open mappings of manifolds, Mat. Sb. 65 (107) (1964) 357
,[9] Topological rigidity and H1–negative involutions on tori
, , ,[10] Non-zero degree maps between 2n–manifolds, Acta Math. Sin. Engl. Ser. 20 (2004) 1 | DOI
, ,[11] Deformation of maps to branched coverings in dimension three, Math. Ann. 245 (1979) 273 | DOI
,[12] Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183
,[13] Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999)
,[14] Algebraic topology, Cambridge Univ. Press (2002)
,[15] Three-fold branched coverings of S3, Amer. J. Math. 98 (1976) 989
,[16] Über offene Abbildungen auf die 3–Sphäre, Math. Z. 140 (1974) 203 | DOI
,[17] Piecewise linear topology, , Benjamin (1969)
,[18] 4–Manifolds as covers of the 4–sphere branched over non-singular surfaces, Geom. Topol. 6 (2002) 393 | DOI
, ,[19] Three-manifolds as 3–fold branched covers of S3, Quart. J. Math. Oxford Ser. 27 (1976) 85 | DOI
,[20] Four-manifolds as 4–fold branched covers of S4, Topology 34 (1995) 497 | DOI
,[21] Existence of quasiregular mappings, from: "Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986)" (editors D Drasin, C J Earle, F W Gehring, I Kra, A Marden), Math. Sci. Res. Inst. Publ. 10, Springer (1988) 179
,[22] Quasiregular mappings, 26, Springer (1993)
,[23] Simply connected quasiregularly elliptic 4–manifolds, Ann. Acad. Sci. Fenn. Math. 31 (2006) 97
,[24] Introduction to piecewise-linear topology, , Springer (1982)
, ,[25] Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I No. 392 (1966) 10
,Cité par Sources :