On the nonexistence of certain branched covers
Geometry & topology, Tome 16 (2012) no. 3, pp. 1321-1344.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that while there are maps T4 #3(S2 × S2) of arbitrarily large degree, there is no branched cover from the 4–torus to #3(S2 × S2). More generally, we obtain that, as long as a closed manifold N satisfies a suitable cohomological condition, any π1–surjective branched cover Tn N is a homeomorphism.

This article is incorrect.  Text of retraction received 14 February 2019

DOI : 10.2140/gt.2012.16.1321
Classification : 57M12, 30C65, 57R19
Keywords: branched cover, quasiregularly elliptic manifold

Pankka, Pekka 1 ; Souto, Juan 2

1 Department of Mathematics and Statistics, University of Helsinki, PO Box 68 (Gustaf Hällströmin katu 2b), FI-00014 Helsinki, Finland
2 Mathematics Department, University of British Columbia, 1984 Mathematics Road, Vancouver BC V6T 1Z2, Canada
@article{GT_2012_16_3_a1,
     author = {Pankka, Pekka and Souto, Juan},
     title = {On the nonexistence of certain branched covers},
     journal = {Geometry & topology},
     pages = {1321--1344},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2012},
     doi = {10.2140/gt.2012.16.1321},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/}
}
TY  - JOUR
AU  - Pankka, Pekka
AU  - Souto, Juan
TI  - On the nonexistence of certain branched covers
JO  - Geometry & topology
PY  - 2012
SP  - 1321
EP  - 1344
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/
DO  - 10.2140/gt.2012.16.1321
ID  - GT_2012_16_3_a1
ER  - 
%0 Journal Article
%A Pankka, Pekka
%A Souto, Juan
%T On the nonexistence of certain branched covers
%J Geometry & topology
%D 2012
%P 1321-1344
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/
%R 10.2140/gt.2012.16.1321
%F GT_2012_16_3_a1
Pankka, Pekka; Souto, Juan. On the nonexistence of certain branched covers. Geometry & topology, Tome 16 (2012) no. 3, pp. 1321-1344. doi : 10.2140/gt.2012.16.1321. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.1321/

[1] J W Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920) 370 | DOI

[2] I Berstein, A L Edmonds, The degree and branch set of a branched covering, Invent. Math. 45 (1978) 213 | DOI

[3] I Berstein, A L Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979) 87 | DOI

[4] M Bonk, J Heinonen, Quasiregular mappings and cohomology, Acta Math. 186 (2001) 219 | DOI

[5] G E Bredon, Orientation in generalized manifolds and applications to the theory of transformation groups, Michigan Math. J. 7 (1960) 35

[6] G E Bredon, Introduction to compact transformation groups, 46, Academic Press (1972)

[7] G E Bredon, Topology and geometry, 139, Springer (1997)

[8] A V Černavskiĭ, Finite-to-one open mappings of manifolds, Mat. Sb. 65 (107) (1964) 357

[9] F Connolly, J F Davis, Q Khan, Topological rigidity and H1–negative involutions on tori

[10] H B Duan, S C Wang, Non-zero degree maps between 2n–manifolds, Acta Math. Sin. Engl. Ser. 20 (2004) 1 | DOI

[11] A L Edmonds, Deformation of maps to branched coverings in dimension three, Math. Ann. 245 (1979) 273 | DOI

[12] M Gromov, Hyperbolic manifolds, groups and actions, from: "Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 183

[13] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999)

[14] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[15] H M Hilden, Three-fold branched coverings of S3, Amer. J. Math. 98 (1976) 989

[16] U Hirsch, Über offene Abbildungen auf die 3–Sphäre, Math. Z. 140 (1974) 203 | DOI

[17] J F P Hudson, Piecewise linear topology, , Benjamin (1969)

[18] M Iori, R Piergallini, 4–Manifolds as covers of the 4–sphere branched over non-singular surfaces, Geom. Topol. 6 (2002) 393 | DOI

[19] J M Montesinos, Three-manifolds as 3–fold branched covers of S3, Quart. J. Math. Oxford Ser. 27 (1976) 85 | DOI

[20] R Piergallini, Four-manifolds as 4–fold branched covers of S4, Topology 34 (1995) 497 | DOI

[21] S Rickman, Existence of quasiregular mappings, from: "Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986)" (editors D Drasin, C J Earle, F W Gehring, I Kra, A Marden), Math. Sci. Res. Inst. Publ. 10, Springer (1988) 179

[22] S Rickman, Quasiregular mappings, 26, Springer (1993)

[23] S Rickman, Simply connected quasiregularly elliptic 4–manifolds, Ann. Acad. Sci. Fenn. Math. 31 (2006) 97

[24] C P Rourke, B J Sanderson, Introduction to piecewise-linear topology, , Springer (1982)

[25] J Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I No. 392 (1966) 10

Cité par Sources :