Quilted Floer trajectories with constant components: Corrigendum to the article “Quilted Floer cohomology”
Geometry & topology, Tome 16 (2012) no. 1, pp. 127-154.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We fill a gap in the proof of the transversality result for quilted Floer trajectories in [Geom. Topol. 14 (2010) 833–902] by addressing trajectories for which some but not all components are constant. Namely we show that for generic sets of split Hamiltonian perturbations and split almost complex structures, the moduli spaces of parametrized quilted Floer trajectories of a given index are smooth of expected dimension. An additional benefit of the generic split Hamiltonian perturbations is that they perturb the given cyclic Lagrangian correspondence such that any geometric composition of its factors is transverse and hence immersed.

DOI : 10.2140/gt.2012.16.127
Keywords: Floer theory, Lagrangian correspondence, transversality

Wehrheim, Katrin 1 ; Woodward, Chris T 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
@article{GT_2012_16_1_a2,
     author = {Wehrheim, Katrin and Woodward, Chris T},
     title = {Quilted {Floer} trajectories with constant components: {Corrigendum} to the article {{\textquotedblleft}Quilted} {Floer} cohomology{\textquotedblright}},
     journal = {Geometry & topology},
     pages = {127--154},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2012},
     doi = {10.2140/gt.2012.16.127},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.127/}
}
TY  - JOUR
AU  - Wehrheim, Katrin
AU  - Woodward, Chris T
TI  - Quilted Floer trajectories with constant components: Corrigendum to the article “Quilted Floer cohomology”
JO  - Geometry & topology
PY  - 2012
SP  - 127
EP  - 154
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.127/
DO  - 10.2140/gt.2012.16.127
ID  - GT_2012_16_1_a2
ER  - 
%0 Journal Article
%A Wehrheim, Katrin
%A Woodward, Chris T
%T Quilted Floer trajectories with constant components: Corrigendum to the article “Quilted Floer cohomology”
%J Geometry & topology
%D 2012
%P 127-154
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.127/
%R 10.2140/gt.2012.16.127
%F GT_2012_16_1_a2
Wehrheim, Katrin; Woodward, Chris T. Quilted Floer trajectories with constant components: Corrigendum to the article “Quilted Floer cohomology”. Geometry & topology, Tome 16 (2012) no. 1, pp. 127-154. doi : 10.2140/gt.2012.16.127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2012.16.127/

[1] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002)

[2] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[3] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[4] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Colloquium Publ. 52, Amer. Math. Soc. (2004)

[5] T Perutz, A symplectic Gysin sequence

[6] J Robbin, D Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995) 1

[7] H L Royden, Real analysis, Macmillan (1988)

[8] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[9] K Wehrheim, C T Woodward, Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010) 129

[10] K Wehrheim, C T Woodward, Quilted Floer cohomology, Geom. Topol. 14 (2010) 833

[11] K Wehrheim, C T Woodward, Floer cohomology and geometric composition of Lagrangian correspondences, to appear in Adv. Math.

[12] K Wehrheim, C T Woodward, Pseudoholomorphic quilts, to appear in J. Symp. Geom.

[13] K Wehrheim, C T Woodward, Exact triangles for fibered Dehn twists, in preparation

[14] K Wehrheim, C T Woodward, Floer field theory, in preparation

Cité par Sources :